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Velocity distribution for a dilute vibrated granular material

V. Kumaran
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India

~Received 14 September 1998!

The velocity distribution for a vibrated granular material is determined in the dilute limit where the fre-
quency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions.
The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and
two dissipation mechanisms–inelastic collisions and air drag—are considered. In the latter case, a general form
for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle
colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to
inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In
addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about
zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating
surface are obtained using a flux balance condition in velocity space, and these are solved to determine the
distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is
due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as
@^U2&S /(12e2)#, where^U2&S is the mean square velocity of the vibrating surface ande is the coefficient of
restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag
and the amplitude function is symmetric, and the mean square velocity scales as (^U2&Sg/mm)1/(m12) when the
acceleration due to the fluid drag is2mmuyuuyum21, where g is the acceleration due to gravity. For an
asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply
peaked around@62^U&S /(12e)# when the dissipation is due to inelastic collisions, and around6@(m
12)^U&Sg/mm#1/(m11) when the dissipation is due to fluid drag, where^U&S is the mean velocity of the
surface. The distribution functions are compared with numerical simulations of a particle colliding with a
vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for
a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for
the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the
vibrating surface is symmetric in the limitd I[(2nr)/(12e)!1. Here,n is the number of particles per unit
width andr is the particle radius. In this limit, an asymptotic analysis is used about the limit where there are
no binary collisions. It is found that the distribution function has a power-law divergence proportional to
uuxu(cd I21) in the limit ux→0, whereux is the horizontal velocity. The constantc and the moments of the
distribution function are evaluated from the conservation equation in velocity space. It is found that the mean
square velocity in the horizontal direction scales asO(d IT), and the nontrivial third moments of the velocity
distribution scale asO(d Ie IT

3/2) wheree I5(12e)1/2. Here,T5@2^U2&S /(12e)# is the mean square velocity
of the particles.@S1063-651X~99!06703-3#

PACS number~s!: 81.05.Rm, 45.05.1x, 05.70.Ln, 62.90.1k
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I. INTRODUCTION

External vibrations have been widely used to assist
transport of granular materials in solids handling operatio
In these operations, there is a transfer of energy from
vibrating surface to the particles, and this could result in
fluidization of the particles. In a fluidized state, the weight
the particles is balanced by the momentum transmitted du
instantaneous binary collisions between particles, and the
ergy transmitted from the vibrating surface to the particle
dissipated due to inelastic particle collisions or the fluid d
exerted by the surrounding gas. Vibrated granular mater
have also been of interest because they exhibit unusual p
erties, such as gaslike, liquidlike, and solidlike states, and
propagation of density waves in the medium@1,2#. These
types of behavior suggest that the macroscopic propertie
these systems could be derived from the microscopic l
using techniques from statistical mechanics and the kin
theory of gases. In the present paper, the average prope
PRE 591063-651X/99/59~4!/4188~15!/$15.00
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of a vibrated material are studied in the dilute ‘‘Knudsen
limit, where the frequency of binary collisions between pa
ticles is small compared to the frequency of particle co
sions with the vibrating surface. The velocity distribution
the complementary limit, where the frequency of binary c
lisions is large compared to that of particle collisions w
the vibrating surface, was the subject of earlier stud
@9,10#.

Gas fluidized beds, where the fluidization takes place
to the drag force caused by a flowing gas, have been
interest for some time. These have been traditionally
scribed using continuum approaches, where the particle
gas phase are described using macroscopic mass and
mentum equations. Constitutive relations, similar to those
compressible Newtonian fluids, are written for the tw
phases, and the coupling between the two phases is inclu
in the form of a drag force that depends on the volume fr
tion and relative velocities of the two phases@3#. The stabil-
ity of the uniformly fluidized state was first analyzed b
4188 ©1999 The American Physical Society
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Jackson@4# using a simple constitutive relation, and it wa
found that the uniformly fluidized state is always unstable
density fluctuations. Since then, there have been many s
ies that have included more complicated constitutive re
tions for the stress tensor@5#. However, there has not ye
been a consensus on the correct form of the macrosc
equations. Another approach to the derivation of mac
scopic equations is to write equations for the particle moti
and use statistical averaging techniques to derive the ma
scopic balance equations. This is complicated in a gas fl
ized bed due to the complex nature of the interactions
tween the particles and the gas, and the turbulent flow of
gas. The description for a vibrofluidized bed is simpler d
to the absence of the gas flow.

There has recently been a lot of interest in the veloc
fluctuations of spatially uniform vibrated granular materia
There have been experimental and computer simulation s
ies which have tried to determine the scaling of the veloc
fluctuations in the vibrated bed as a function of the freque
and the amplitude of oscillations of the vibrating surfac
Luding, Herrmann, and Blumen@6# carried out ‘‘event
driven’’ simulations of a two-dimensional system of inelas
disks in a gravitational field vibrated from below, and o
tained scaling laws for the density variations in the b
Their simulations indicate that the density of the partic
decreases exponentially with height at large heights ab
the vibrating surface, and the height of the center of m
was found to vary asH}U0

1.5, whereU0 is the amplitude of
the velocity of the vibrating surface. Warr, Huntley, an
Jacques@7# carried out an experimental study of a tw
dimensional vibrofluidized bed. The density and velocity d
tribution functions were determined using image analy
techniques. Their experimental study also reported an ex
nential dependence of the density on the height near the
of the bed, similar to the Boltzmann distribution for the de
sity of a gas in a gravitational field. However, the depe
dence of the density deviates from the exponential beha
near the bottom. The mean square velocity was found to v
asT}U0

1.41 in the experimental study, and the height of t
center of mass was found to vary asH}U0

1.4. Luding @8#
carried out simulations of rough two-dimensional disk
where the distribution of energy between the rotational a
kinetic modes was examined as a function of the coefficie
of restitution and friction. He observed that the power la
for the variation of the height of the center of mass with t
number of particles and velocity of the vibrating surfa
from these simulations is different from that observed in
experiments@7#. Most theoretical studies predict a scalin
T}U0

2 @7#, which is at variance with the experimental resul
The author used a kinetic theory analysis to study

velocity fluctuations in a vibrated granular material whe
the dissipation of energy is due to inelastic collisions or d
to the fluid drag of the gas@9,10#. The limit where the fre-
quency of binary collisions between particles is large co
pared to that of collisions with the vibrating surface w
considered. In addition, the dissipation of energy during
collision due to inelasticity or between successive collisio
due to drag is small compared to the energy of a particle
that it is possible to use a perturbation analysis in which
particles are considered elastic in the leading approximat
In this case, the system resembles a hard sphere gas of e
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particles, the leading order density distribution is an exp
nentially decaying Boltzmann distribution, and the leadi
order velocity distribution is a Maxwell-Boltzmann distribu
tion. However, the temperature of the system cannot be
tained from the leading approximation, but must be det
mined by a balance between the source of energy du
particle collisions with the vibrating surface and the dissip
tion of energy due to inelastic collisions or drag. The ana
sis indicated that the temperature scales asT}U0

2 when the
dissipation is due to inelastic collisions andT}U0

4/3 when the
dissipation is due to a drag force that is linear in the parti
velocity. A perturbation to the leading order distributio
function, in the form of a finite sum of the lowest nontrivia
velocity moments, was used to calculate the effect of dis
pation. The anisotropy and the skewness in the distribu
function due to dissipation were found to be in qualitati
agreement with the experiments@7#. The temperature scaling
T}U0

1.41 could be caused by the combined effect of inelas
collisions and drag. However, this analysis does not exp
the scaling lawT}U0

1.5 observed in the simulations. More
over, the exponential decay of the velocity profile is in err
near the bottom of the bed, where the density is sufficien
large that an ideal gas law for the relation between press
and temperature is not applicable.

The present analysis considers the complementary l
where the frequency of binary collisions between particle
small compared to the frequency of particle collisions w
the vibrating surface. The system is very dilute, and is
likely to correspond to real applications. But the motivati
for this analysis is as follows. One would expect a realis
model for a vibrofluidized bed to be applicable over a ran
of parameter values, ranging from dilute to dense. Howev
with the current analytical techniques available, one can
obtain exact solutions to the Boltzmann equation that is
plicable over a wide range of parameter values, and ther
a compromise between the exactness of the analysis an
range of applicability. One could construct a phenome
logical model for the behavior of a vibrofluidized bed, b
for a consistent model it should agree with some exact s
tions in asymptotic limits where such solutions can be o
tained. One obvious limit is a dense system with low inel
ticity where the distribution function is close to a Maxwe
Boltzmann distribution. Even though this limit is no
encountered in technological situations, it is still valuab
because it provides a reference point for less exact solut
that are valid over a larger parameter regime. In the sa
spirit, the present analysis is an attempt to obtain an ex
solution in the opposite limit, so that models can be co
structed that span the intermediate regime and are consi
with the exact limiting solutions. Similar calculations for d
lute granular materials have been carried out previously
Kumaran and Koch@11# and Kumaran@12#.

In the leading approximation, the binary collisions a
neglected, and the distribution function is derived for
single particle colliding on a vibrating surface in the lim
where the dissipation of energy during a collision is sm
compared to the energy of the particle. A single particle c
liding with a vibrating surface was analyzed by Warr a
Huntley @13# and Warret al. @14#, who used both experi-
ments and computer simulations to determine the distribu
function. The simulations indicated that the distributio
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4190 PRE 59V. KUMARAN
function is a Gaussian distribution for a system where
dissipation of energy is due to inelastic collisions with t
vibrating surface, and they used a generalized Lange
equation for the particle velocity to calculate the distributi
function.

In Sec. II, the distribution function for a single partic
colliding with a vibrating surface in a gravitational field
studied. Two dissipation mechanisms—inelastic collisio
and fluid drag—are considered. In addition, two types
amplitude functions for the velocity of the vibratin
surface—a symmetric amplitude function with zero mean
locity and a nonzero mean square velocity, and an asymm
ric amplitude function with nonzero mean velocity—are co
sidered. A differential equation for the distribution functio
is derived in the limit where the dissipation of energy duri
a collision due to inelasticity or between successive co
sions due to drag is small compared to the energy of a
ticle. This equation is solved to obtain the distribution fun
tion. It is found that the form of the distribution function
sensitive to the type of dissipation and the type of amplitu
function of the vibrating surface. The results of the analy
are verified using computer simulations, and excellent ag
ment is found with no adjustable parameters. For the cas
inelastic collisions, a perturbation expansion in the param
e I5(12e)1/2 is used to determine the distribution functio
Though earlier studies@7,15# have also used the paramet
(12e2) in their expansions, the two are essentially the sa
because (12e2)52(12e) in the leading approximation fo
(12e)!1.

In Sec. III, the effect of binary collisions on the distribu
tion function for a system with inelastic collisions and
symmetric amplitude function is analyzed using metho
similar to those used in Kumaran and Koch@11# and Kuma-
ran @12#. An asymptotic analysis is used in the limitd I
[(2nr)/(12e)!1, where the particle distribution functio
is close to the distribution function in the absence of bin
collisions. It is found that the mean square velocity in t
horizontal direction scales asO(d IT), and the nontrivial
third moments of the velocity distribution scale asO„d I(1
2e)T3/2

…, whereT is the mean square velocity in the vertic
direction.

II. SINGLE-PARTICLE DISTRIBUTION FUNCTION

A. Dissipation due to inelastic collisions

The distribution function for the velocity of a particle in
gravitational field driven by a vibrating surface is derived
the present section. A two-dimensional coordinate system
used for the analysis, where they axis is directed opposite to
gravity, thex axis is in the horizontal plane, and the positio
of the vibrating surface varies symmetrically about they
50 plane. The velocity of the vibrating surface is period
but no assumption is made regarding the exact form of
amplitude function. The collisions between the particle a
the vibrating surface are inelastic with a coefficient of res
tution e. The collision of the particle with the vibrating su
face results in the transfer of energy from the surface to
particle, while the inelastic nature of the collision results
the dissipation of energy. It can be shown that when
coefficient of elasticity is close to 1@(12e)!1#, the mean
square velocity of the particle is large compared to the m
e
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square velocity of the vibrating surface. In addition, it
assumed that the time period of oscillation of the surface
small compared to the time period between successive c
sions, so that there is no correlation in the velocity of t
surface at successive collisions. If the magnitude of the
locity of the vibrating surface isU, the increase in the kinetic
energy of the particle due to a collision with the vibratin
surface isO(U2), while the dissipation of energy due t
inelasticity isO„(12e2)uy

2
…, whereuy is the magnitude of

the velocity of the particle. Equating the source and dissi
tion of energy, it is seen that the magnitude of the parti
velocity is uy5O„U/(12e2)1/2

…@U, and an asymptotic
analysis in the small parametere I5(12e)1/2 is used to de-
termine the distribution function. In addition, it is assum
that the amplitude of oscillations of the vibrating surface
small compared to the maximum height of the partic
(uy

2/2g), and the frequency of oscillations of the surface
large compared to the time between successive collision
the particle, so that the interaction between the particle
the vibrating surface is modeled as a series of collisions w
the plane located withy50 with velocity U, and there is no
correlation between the velocity of the plane during succ
sive collisions.

In this section, a differential equation is derived for th
distribution function F(uy), which is defined such tha
F(uy)duy is the probability that the velocity of a particle tha
is leaving the vibrating surface is in the intervalduy about
uy . The distribution functionF(uy) is defined only foruy
.0, and the distribution function for the velocity at an
height can be inferred fromF(uy), since the particle ex-
ecutes ballistic motion between successive collisions. C
sider a collision between a particle with an initial velocit
2uy8 with the vibrating plate which has an instantaneo
velocity U8. The velocity of the particle after the collision
uy , is related to the initial velocity2uy8 by

uy2U852e~2uy82U8!. ~1!

Note the requirementU.2uy8 for a particle to collide with
the surface.

Particle collisions with the vibrating surface cause
change in the particle velocity and a flux in velocity spac
There is a collisional accumulation in the velocity interv
duy aboutuy due to collision of the particle with velocity
2uy8 with the vibrating surface, whereuy8 anduy are related
by Eq.~1!. There is a collisional depletion in the intervalduy
aboutuy due to the collision of the particle with the velocit
2uy with the surface. A differential equation forF(uy) at
steady state is determined from the condition thatthe ‘‘aver-
age’’ accumulation rate in the interval duy about uy , due to
collisions of the particle with velocity in the interval duy8
about2uy8 with the vibrating surface, is equal to the ‘‘aver
age’’ depletion rate in the interval duy about uy due to col-
lisions of the particle with velocity in the interval duy about
2uy with the vibrating surface. Here, the term ‘‘average’’
denotes an average over the distribution of velocities of
vibrating surface, anduy8 anduy are related by Eq.~1!.

The rate of collisionR of a particle with velocity in the
interval duy8 about2uy8 with the vibrating surface moving
with velocity U8 is
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R5~U81uy8!F~uy8!duy8 . ~2!

The ‘‘average’’ flux of particles entering the intervalduy
aboutuy is then given by

Nin~uy!duy5^~U81uy8!F~uy8!duy8&S , ~3!

where^ &S is an average over the distribution of velocities
the vibrating surfaceU8. Using Eq. ~1! to expressuy8 in
terms ofuy , the flux of particles entering the intervalduy is

Nin~uy!5~1/e!^~U81uy8!F~uy8!&S . ~4!

The rate of collision of the particle with velocity in the in
terval duy about2uy with the vibrating surface is

R5~uy1U !F~uy!duy , ~5!

where U is the instantaneous velocity of the surface. T
‘‘average’’ flux of particles out of the intervalduy aboutuy
is

Nout~uy!duy5^~uy1U !F~uy!duy&S . ~6!

At steady state, the distribution function is determined fro
the equationNin(uy)5Nout(uy). This equation is difficult to
solve in general, but a solution can be obtained in the li
e I!1. It was shown a little earlier that in this limit, th
velocity of the mean square velocity of the surface^U2&S is
small compared to the mean square velocity of the part
^uy

2& and the difference in velocity due to a particle collisio
with the surface is small compared to the particle veloc
Consequently, it is necessary to expand the expression
the flux ~3! in a series in the parameter (uy82uy),

F~uy8!5F~uy!1~uy82uy!
dF

duy
1

~uy82uy!2

2

d2F

duy
2

1O~uy82uy!3. ~7!

The above expansion is inserted into the flux balance co
tion Nin(uy)5Nout(uy), and the resulting equation is ex
panded in the parametere I and the velocity of the surfac
U8. The result, correct toO(e I) andO(^U2&S), is

e I S 2Fuy1uy
2 dF

duy
D22^U&SS uy

dF

duy
12F D

12^U2&SS uy

d2F

duy
2

1
dF

duy
D 50. ~8!

The solution for the conservation equation~8! depends on
the amplitude function for the velocity of the vibrating su
face. For asymmetricamplitude function, the average^U&S
50, and the conservation equation reduces to

e I S 2Fuy1uy
2 dF

duy
D12^U2&SS uy

d2F

duy
2

1
dF

duy
D 50. ~9!

It can be easily verified that the normalized solution of t
above equation for the distribution functionF is a Gaussian
distribution
e

it

le

.
for

i-

F5A 2

pTis
expS 2

uy
2

2Tis
D , ~10!

where the mean square velocityTis is

Tis5~2^U2&S /e I !. ~11!

The above expression indicates that the mean square vel
of the particles is proportional tôU2&S /e I , in agreement
with the assumption made above regarding the relative m
nitudes of the mean square velocities of the particles and
vibrating surface. In addition, the velocity distribution fun
tion is predicted to be a one-dimensional Maxwe
Boltzmann distribution at the vibrating surface.

The predicted distribution function~10! and ~11! was
verified using computer simulation studies of the parti
collisions with a vibrating surface. In the simulation, the pa
ticle was given an initial velocity, and the velocity of th
particle was updated at each collision using the collision r
~1!. The velocityU of the vibrating surface was generate
using a random number generator at each collision. For
purpose, a random numberx was generated in the interva
0<x<1, and the velocity of the surface wasU5(2x21) so
that ^U&S50 for a symmetric amplitude function. In add
tion, care was taken to ensure that the constraintU.2uy
@discussed after Eq.~1!# is satisfied. The velocity was firs
updated for 105 collisions without sampling to remove de
pendence on the initial particle velocity at the beginning
the simulation, and samples were then taken for another5

collisions in order to determine the distribution function. T
velocity coordinate in the range22ATis<uy<2ATis was
divided into 200 bins of equal velocity intervals, and th
distribution function at the center of the respective interva
proportional to the number of particles in each bin. The
sults of the simulation fore I51021,1022, and 1023 are
compared with the analytical distribution function~10! and
~11! in Fig. 1. From this figure it is seen that there is exc
lent agreement between the asymptotic result and the s
lations fore I51022 and 1021. There is a deviation of abou
10% of the maximum value ofF(uy) for e I50.3. The de-
viation becomes about 25% of the maximum value fore I
50.7, but the qualitative form of the distribution function
correctly captured by the asymptotic analysis. In additi
there is a difference between the predicted and meas

FIG. 1. Velocity distribution F(uy /ATis) as a function of
uy /ATis for a single particle colliding with a vibrating surface wit
a symmetric amplitude function, where dissipation is due to ine
ticity. Here, Tis is given by Eq.~11!. Solid line, analytical result
~10!; s, e I50.7; n, e I50.3; h, e I51021; L, e I51022.
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4192 PRE 59V. KUMARAN
distribution function nearuy50 because the asymptot
analysis, which assumesuy@U, becomes inaccurate foruy
;U.

The distribution function at any heighty is obtained by
solving the steady-state Boltzmann equation in the abse
of binary collisions between particles:

]~uyf !

]y
1

]~ayf !

]uy
50, ~12!

where the accelerationay52g, f (y,uy) is the distribution
function which is defined so thatf (y,uy)dy duy is the num-
ber of particles per unit width with vertical position in th
intervaldy abouty and velocity in the intervalduy aboutuy ,
and n is the number of particles per unit width in the be
The conservation equation~12! can easily be solved by usin
the characteristic variablesuy andh5(uy

2/21gy); the equa-
tion in terms of this characteristic variable becomes

d f

duy
50. ~13!

Equation~13! indicates thatf is only a function ofh, and this
can be solved using the condition forf (0,uy) from Eq. ~10!
at y50, to obtain the final expression for the distributio
function:

f ~y,uy!5
g

T

1

A2pT
expS 2

uy
2

2T
2

gy

T D . ~14!

Note that the present definition of the distribution function
slightly different from the one commonly used in kinet
theory of gases. Usually, the distribution function at a hei
y is defined such thatr(y) f (y,uy)duy is the density of par-
ticles with velocities in the intervalduy aboutuy at a height
y. For a Maxwell-Boltzmann distribution, the density is d
fined asr(y)5r(0)exp(2gy/T), and the distribution func-
tion is defined asf (y,uy)5(1/A2pT)exp(2uy

2/2T). In the
present analysis, it is more convenient to use the above
nition, wheref (y,uy)dy duy is the number of particles in th
interval dy about y in real space and induy about uy in
velocity space.

For an asymmetricamplitude function for the vibrating
surface, the mean velocitŷU&S is not zero, and the solution
for the conservation equation~8! assumes a different form. I
can be seen from Eq.~8! that the particle velocityuy scales
as (̂ U&S /e I), in contrast to the scalinguy;(^U2&S /e I)

1/2

for a symmetric amplitude function. In this case, if^U2&S

;^U&S
2 , the leading order equation for the distribution fun

tion is

e I S 2Fuy1uy
2 dF

duy
D22^U&SS uy

dF

duy
1F D50. ~15!

It can easily be verified that the solution for the above eq
tion is ad function,

F~uy!5dS uy2
2^U&S

e I
D . ~16!
ce

.

t

fi-

-

However, in the vicinity ofuy5(2^U&S /e I), the gradient of
distribution function becomes large, and the higher order
rivatives in the conservation equation could become sign
cant. It turns out that the width of this region
O(^U&S /e I

1/2), and the behavior in this region is determine
using the substitutionuy5(^U&S /e I)(21e I

1/2v), wherev is
O(1). Theleading order conservation equation forv, which
represents the deviation ofuy from 2^U&S /e I

1/2, is

2S ^U2&S

^U&S
2

21D d2F

dv2
1e I

2S v
dF

dv
1F D50. ~17!

The solution of the above equation is, once again, a Gaus
distribution

F~v !5A 2

pTia
expS 2

v2

2Tia
D , ~18!

where

Tia5
2

e I
2S ^U2&S

^U&S
2

21D . ~19!

The above distributionF(v) is valid for uy.0, and the dis-
tribution function for uy,0 is an image of this about th
uy50 axis. Therefore, the distribution function at the vibra
ing surface is a bimodal distribution consisting of two Gau
ian distributions centered at62^U&S /e I .

It is interesting to note that the above result predictsTia

50 for ^U2&S5^U&S
2 . This corresponds to the case whe

the amplitude of the surfaceA(t) is a ‘‘sawtooth’’ function
A(t)5A0@vt2mod(vt)# where mod(vt) is the highest in-
teger less thanvt, and the velocity has a constant valu
A0v. In this case, it can easily be verified from Eq.~1! that
the velocity at steady state,uy , also has a constant valu
uy5U(11e)/(12e), and the exact solution for the distr
bution function is

F~uy!5dS uy2
U~11e!

12e D . ~20!

The above analysis indicates that the distribution function
the vibrating surface is bimodal, with two peaks
@6^U&S /(12e)#, and the width of each of these peaks
O@^U&S /(12e)1/2#. The form of the distribution function a
any height can easily be determined using the method
characteristics used earlier. If the distribution function at
vibrating surface is given by the leading approximation~16!,
the distribution function at any heighty is

f ~y,uy!5S 4^U&S

e Ig
D 21

dS uy6A2^U&S

e I
22gyD ~21!

for 0<y<2^U&S /e Ig.
The distribution function~18! and ~19! was also verified

using computer simulations similar to those used for
symmetric amplitude function. In these simulations, the
locity of the vibrating surfaceU was set equal to a random
numberx in the interval 0<x<1, so that^U&SÞ0 in this
case. The results are shown in Fig. 2, and it is seen that
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agreement is excellent fore I51022 and 1021, and fairly
good for e I50.3. There is a significant quantitative diffe
ence between the asymptotic and numerical results foe I
50.7, but the qualitative nature of the distribution function
well captured by the asymptotic result.

B. Dissipation due to fluid drag

The configuration and the coordinate system used for
present case is identical to that in the preceding subsec
However, the dissipation in the present case is due to
drag acting on the particle between successive collisions,
the coefficient of restitution for a particle collision with th
vibrating surface is set equal to 1. The acceleration of
particle between successive collisions is considered to b
the form

duy

dt
52g2muy , ~22!

where the drag force is considered to be linear in the velo
andm is the ratio of the drag coefficient and the mass o
particle and has units of inverse time. The particle velocity
large compared to the velocity of the vibrating surface in
limit ( mU/g)!1 considered here, whereU is the magnitude
of the velocity of the vibrating surface. In this limit, th
change in the particle velocity between successive collisi
due to drag is small compared to the velocity of a particl

The position and the velocity of a particle between s
cessive collisions can be determined by solving the dyna
cal equation~22!,

uy5uy8 exp~2mt !2
g

m
@12exp~2mt !#, ~23!

y5
uy8

m
@12exp~2mt !#2

gt

m
1

g

m2
@12exp~2mt !#,

~24!

whereuy8 is the velocity after a collision with the vibratin
surface. The velocity of the particle before the subsequ
collision, uy9 , is determined by first calculating the time r
quired from the conditiony50, and inserting this into the
expression~23! for the velocity. The expression for the ve

FIG. 2. Velocity distributionF(v/ATia) as a function ofv/ATia

for a single particle colliding with an vibrating surface with a
asymmetric amplitude function, where dissipation is due to ine
ticity. Here, Tia is given by Eq.~19!. Solid line, analytical result
~18!; s, e I50.7; n, e I50.3; h, e I51021; L, e I51022.
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locity uy9 cannot be determined explicitly, but the veloci
correct to second order in the drag coefficientm in the small
dissipation limit is

uy952uy81
2muy8

2

3g
2

4m2uy8
3

9g2
. ~25!

The velocity of the particle after the collision with the su
face,uy , is related touy8 anduy9 by

uy2U852~uy92U8!

5uy82
2muy8

2

3g
1

4m2uy8
3

9g2
1U8. ~26!

The method used to determine the distribution function
the present case is identical to that for a system with di
pation due to inelastic collisions. The average flux of p
ticles entering a differential volumeduy aboutuy correct to
second order in the small parameterm, analogous to Eq.~3!,
is

Nin~uy!duy5K S uy82
2muy8

2

3g
1

4muy8
3

9g2
1U8D F~uy8!duy8L

S

,

~27!

whereuy8 is related touy by Eq. ~26!, and the relative veloc-
ity in Eq. ~27! is different from that in Eq.~3! because a
particle which leaves the surface with a velocityuy8 has a
velocity 2uy81(2muy8

2/3g)2(4muy8
3/9g2) before the sub-

sequent collision with the surface. The average flux of p
ticles leaving the differential volumeduy aboutuy , analo-
gous to Eq.~6!, is

Nout~uy!duy5K S uy2
2muy

2

3g
1

4muy
3

9g2
1U D F~uy!duyL

S

,

~28!

where the relative velocity is once again different from th
in Eq. ~6! because a particle which leaves the surface w
velocity uy after a collision has a velocity2uy

1(2muy
2/3g)2(4muy

3/9g2) before the subsequent collision
The velocity distribution functionF(uy8) is expressed using a
Taylor series expansion in the parameteruy82uy as before,
and the terms proportional tom, ^U&S , and ^U2&S are re-
tained to give

^U2&SS uy

d2F

duy
2

1
dF

duy
D 2^U&SS uy

dF

duy
1F D

1
m

g S uy
3

3

dF

duy
1uy

2F D 50. ~29!

Equation~29! is the conservation equation for the distrib
tion function when the dissipation is due to drag.

For a vibrating surface with a symmetric amplitude fun
tion, ^U&S50, and Eq.~29! reduces to

-
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^U2&SS uy

d2F

duy
2

1
dF

duy
D 1

m

g S uy
3

3

dF

duy
1uy

2F D 50. ~30!

This equation cannot be solved analytically, but a numer
solution can be obtained when the equation is expresse
terms of a dimensionless variableuy* 5uy /(^U2&Sg/m)1/3,

uy*
d2F

duy*
2

1S 11
uy*

3

3 D dF

duy*
1uy*

2F50. ~31!

The above equation has two linearly independent solutio
In the limit uy*→0, one of the solutions has the behavi
F1(uy* )512uy*

3/9, and the second has a divergen
F2(uy* ); ln(uy* ). In the limit uy*→`, the two solutions have
the limiting behaviorF1(uy* );*u

y*
`

exp(2uy*
3/9), while the

second solution has the behaviorF2;uy*
23 . Since the solu-

tion F2 is divergent atuy* 50, this is neglected and the solu
tion for the distribution function is determined by nume
cally integrating Eq.~31! using the conditionF51 at uy*
50. The resulting function was then normalized so th
*duyF(uy)51.

The above results indicate that the mean square velo
of the particle scales as (^U2&Sg/m)2/3, and the distribution
function is very different from the Gaussian distribution f
the case where dissipation is due to inelastic collisions.
numerical solution for the conservation equation~31! is com-
pared with the computer simulations in Fig. 3. The proced
used for the simulation is identical to that used for dissi
tion due to inelastic collisions in the preceding section,
the velocity of the particles between successive collision
updated using Eqs.~23! and ~24!. Figure 3 shows excellen
agreement between the analytical predictions and simula
results as a function of the dimensionless param
(^U2&Sm2/g2)1/3. It is seen that as in the case of dissipati
due to inelastic collisions, there is excellent agreement
(^U2&Sm2/g2)1/351022 and 1021, and reasonable agreeme
for ^U2&Sm2/g2)1/350.3. The agreement is not very good f
^U2&Sm2/g2)1/350.7, but the qualitative features of the di
tribution function are captured by the asymptotic analysis

FIG. 3. Velocity distribution F(uy* ) as a function of uy*
5uy /(^U2&Sg/m)1/3 for a single particle colliding with a vibrating
surface with a symmetric amplitude function, where dissipat
is due to viscous drag. Solid line, solution of Eq.~31!;
s, (^U2&Sm2/g2)1/350.7; n, (^U2&Sm2/g2)1/350.3; h,
(^U2&Sm2/g2)1/351021; (^U2&Sm2/g2)1/351022.
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addition, there is some discrepancy between the analy
and simulation results nearuy* 50 for reasons discussed i
the preceding subsection.

For a distribution function with anasymmetricamplitude
function, ^U&SÞ0, and it can be seen from Eq.~29! that uy

;(^U&Sg/m)1/2. If ^U2&S;^U&S
2 , then the leading orde

conservation equation is

2^U&SS uy

dF

duy
1F D1

m

g S uy
3

3

dF

duy
1uy

2F D 50. ~32!

It can easily be verified that the solution of the above eq
tion is ad function,

F~uy!5dS uy2A3^U&Sg

m D . ~33!

However, as in the preceding section, the higher gradie
become significant in the region nearuy5(3^U&Sg/m)1/2,
and it is necessary to use an expansion similar to that use
the preceding subsection. It is useful to express the resul
terms of a dimensionless parametereD5(^U&Sm/g)1/2. The
expansion for the velocityuy , in terms of this parameter, i

uy5S ^U&Sg

m D 1/2

~A31AeDw!, ~34!

wherew is O(1). The conservation equation, expressed
terms of the variablew, is

A3S ^U2&S

^U&S
2

21D d2F

dw2
12eD

2 S w
dF

dw
1F D50. ~35!

The solution of the above equation is a Gaussian distribu

F5A 2

pTva
expS 2w2

2Tva
D , ~36!

where

Tva5
A3~^U2&S2^U&S

2!

2eD
2 ^U&S

2
. ~37!

The velocity distribution function for the present case
sharply peaked at6(3^U&Sg/m)1/2 at the vibrating surface
and the distribution function isO(1) for velocities
O„eD

1/2(^U&Sg/m)…1/2 different from these peak positions
The distribution function~36! is valid for uy.0, and the
leading order distribution foruy,0 is a mirror image of this
about theuy50 axis. Therefore, the distribution function a
the vibrating surface is a bimodal distribution consisting
two Gaussian functions centered at6(3^U&Sg/m)1/2.

The result~37! indicates thatTva50 as ^U2&S5^U&S
2 ,

which corresponds to a ‘‘sawtooth’’ for the amplitude fun
tion as explained at the end of the preceding subsection
this case, the velocity of the surfaceU is a constant, and the
velocity of the particle can be directly determined from E
~26!. Correct to leading order in the drag coefficientm, the
velocity of the particle isuy5(3^U&Sg/m)1/2, though there
are higher order terms which can be determined using a T

n
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PRE 59 4195VELOCITY DISTRIBUTION FOR A DILUTE VIBRATED . . .
lor series expansion of Eqs.~23! and ~24!. The distribution
function is ad function in this case as well.

The analytical predictions are compared with simulat
results in Fig. 4. The simulation procedure is identical to t
used for an inelastic particle colliding with a vibrating su
face with an asymmetric wave function, and the change
velocity between successive collisions is determined us
Eq. ~22!. The results indicate that the analysis correctly c
tures the distribution function foreD51022 and 1021, but
there is some difference between analytical and simula
results foreD50.3 andeD50.7.

The above analysis can easily be generalized to incl
more complicated forms of the drag force. For example, c
sider a drag law of the form

duy

dt
52g2mmuyuuyum21 ~38!

and the generalized distribution functions are briefly p
sented here. If the velocity of a particle after a collision
uy8 , the velocity before the subsequent collision in the sm
dissipation limit is@equivalent of Eq.~25!#

uy952uy81
2mmuy8

m11

~m12!g
. ~39!

This can be used to determine the conservation equation
the distribution function@equivalent to Eq.~29!#

^U2&SS uy

d2F

duy
2

1
dF

duy
D 2^U&SS uy

dF

duy
1F D

1
mm

g S uy
m12

~m12!

dF

duy
1uy

m11F D 50. ~40!

For a vibrating surface with a symmetric amplitude functi
^U&S50, the distribution function can be expressed in ter
of a dimensionless variableuy* 5uy /(^U2&Sg/mm)1/(m12),

FIG. 4. Velocity distribution F(w/ATva) as a function of
w/ATva for a single particle colliding with an vibrating surface wit
an asymmetric amplitude function, where dissipation is due to
cous drag. Here,Tva is given by Eq.~37!. Solid line, analytical
result ~36!; s, eD50.7; n, eD50.3; h, eD51021; L, eD

51022.
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uy*
d2F

duy*
2

1S 11
uy*

m12

~m12!
D dF

duy*
1uy*

m11F50. ~41!

The above equation also has to be solved numerically,
the form of the equation indicates that the velocityuy

;(^U2&Sg/mm)1/(m12).
For a vibrating surface with an asymmetric amplitu

function, the equivalent of Eq.~32! is

2^U&SS uy

dF

duy
1F D1

mm

g S uy
m12

~m12!

dF

duy
1uy

m11F D 50.

~42!

From the above equation, it can easily be verified that
leading order distribution function@analogous to Eq.~33!# is

F~uy!5dS ^U&Sg~m12!

mm
D 1/~m11!

. ~43!

The distribution function near uy5@^U&Sg(m
12)/mm#1/(m11) is determined using the scaled variablew
defined as@equivalent of Eq.~34!#

w5S ^U&Sg

mm
D 1/~m11!

@~m12!1/~m11!1AeDw#, ~44!

where the parametereD5(^U&S
mmm /g)1/(m11). The solution

for the distribution function in terms of this scaled variable
a Gaussian distribution given by Eq.~36!, where Tva is
@equivalent of Eq.~37!!#

Tva5
~m12!1/~m11!~ ^U2&S2^U&S

2!

2eD
2 ^U&S

2
. ~45!

III. FIRST CORRECTION DUE TO BINARY COLLISIONS

The distribution function that includes the leading ord
effect of binary collisions is derived in the limit where th
binary collisions are sufficiently infrequent compared to p
ticle collisions with the vibrating surface, and the distributio
function approaches the single particle distribution funct
between successive binary collisions. It is shown a little la
that this limit is observed in the parameter regimed I!1,
whered I52nr/(12e), n is the number of particles per un
width andr is the particle radius. This correction to the di
tribution function at the vibrating surface is derived se
consistently at steady state by equating the collisional ac
mulation and depletion of particles in a differential volum
in velocity space. The distribution function as a function
height is then obtained using the method of characteris
used in the preceding section. Since most of the partic
have distribution functions that are close to the single p
ticle distribution function in the absence of binary collision
the leading effect of binary collisions is due to collision
between two particles having a velocity distribution given
Eq. ~14!. It is shown a little later, after deriving the distribu
tion function, that the error in the collisional flux due to th
approximation isO(d I) smaller than the leading order coll
sional flux.

Before proceeding to derive the correction to the distrib

-
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4196 PRE 59V. KUMARAN
tion function, it is necessary to determine the change in
locity due to a binary collision. Consider a collision betwe
two particles with initial velocities (0,uy8) and (0,u1y8 ) in the
interval dy† about the vertical positiony† such that one of
the particles has a final velocity (ux

† ,uy
†), and that the line

joining the centers of the particles at the point of collisi
makes an angleu with the horizontal. If the collision is elas
tic, the initial and final velocities are related by

ux
†52

wy8

2
sin~2u!,

~46!

uy
†5vy81

wy8

2
cos~2u!,

where vy85(uy81u1y8 )/2 and wy85(uy82u1y8 ). The above
equations can be inverted to expressvy8 andwy8 in terms of
ux

† anduy
† :

vy85uy
†1ux

† cot~2u!,
~47!

wy8522ux
† csc~2u!.

The collision described above results in an accumula
of particles in the differential volumedy†dux

†duy
† about

(y†,ux
† ,uy

†). The rate of collisions per unit lengthl in the
horizontal direction leading to accumulation is

~R/l !5n2dy†dvy8dwy8E dk f 0~y†,vy8! f 0~y†,wy8!

3~2rw8–k!dux
†duy

† , ~48!

wherek is the unit vector in the direction of the line joinin
the centers of the two particles, and is directed from
center of the particle with velocity (0,uy8) to the center of the
particle with velocity (0,u1y8 ). The distribution functions
f 0(y†,vy8) and f 0(y†,wy8) @from Eq. ~14!# are

f 0~y†,vy8!5
g

T

1

ApT
expS 2

vy8
2

T
2

gy†

T D f 0~y†,wy8!

5
g

T

1

A4pT
expS 2

wy8
2

4T
2

gy†

T D . ~49!

In addition, the integral in Eq.~48! is carried out only for
w8•k>0, since the particles move away from each other
w8•k,0. In deriving Eq. ~48!, the distribution function
f (y†,ux

† ,uy
†) is assumed to be the distribution functio

f 0(y†,uy8)d(ux8)5(2pT)21/2exp(2uy8
2/2T)d(ux8) in the ab-

sence of binary collisions. The justification for this assum
tion is as follows. It is shown a little later that the fraction
particles with velocitiesO(AT) different from ux

†50 is
O(d I), and in the limit d I!1 most of the particles hav
velocities that areO(d I) different fromux

†50. Consequently,
the error made due to this assumption is alsoO(d I) smaller
than the collisional flux of particles.

Using the relations~47! between the velocities before an
after collision, the rate of binary collisions between partic
-

n

e

r

-

s

in the intervaldy† about the positiony† which lead to an
accumulation of particles in the differential volumedux

†duy
†

about (ux
† ,uy

†) is

R/l 58n2rux
†E du f 0~y†,vy8! f 0~y†,wy8!„2csc~2u!2

…

3sin~u!dux
†duy

†dy†

5
A2rn2g2

pT3 FexpS 2
ux

†2

T
2

uy
†2

2T
2

2gy†

T D
3E dc expS 2

c2

T DS~c,ux
† ,uy

†!Gdux
†duy

†dy†,

~50!

S~c,ux
† ,uy

†!5F1

2
6

1

2
A12

1

11cot~2u!2G 1/2

. ~51!

In deriving Eq. ~50!, the relation between the differentia
volumes in velocity spacedvy8dwy852 csc(2u)dux

†duy
† has

been used, and the transformation

c5S A2ux
† cot~2u!1

uy
†

A2
D ~52!

has been employed to convert the independent variable f
the angleu to the variablec. It can easily be verified that the
limits of integration forc are2`<c<`. S(c,ux

† ,uy
†) is

the factor sin(u) in Eq. ~50! written in terms ofc, ux
† , and

uy
† .

The above collisions at different vertical positionsy† in
the bed lead to an accumulation of particles in the differ
tial volume duxduy about (ux ,uy) at the vibrating surface,
where (ux ,uy) are related to (ux

† ,uy
†) as follows:

ux
†5ux ,

uy
2

2
5

uy
†2

2
1gy†. ~53!

The total rate of accumulation of particles at the vibrati
surface due to binary collisions is given by an integral ov
the distance from the vibrating surfacey† of the collisional
flux that leads to an accumulation in the differential volum
duxduy about (ux ,uy),

Nin
~b!~0,ux ,uy!duxduy

5
A2rn2g2

pT3
dux

†duy
†FexpS 2

ux
2

T D
3E dy† expS 2

uy
†2

2T
2

2gy†

T D
3E dc expS 2

c2

T DS~c,ux
† ,uy

†!G . ~54!

It is convenient to represent the right side of Eq.~54! using
the independent variables (uy ,uy

†) instead of (uy
† ,y†). It can
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easily be verified that the differential volumes in these t
coordinates are related byduy

†dy†5(uuyu/g)duyduy
† , and

Eq. ~54! then becomes

Nin
~b!~0,ux ,uy!5

A2rn2g

pT3 FexpS 2
ux

21uy
2

T D uuyu

3E
uy

~uy
2
!1/2

duy
† expS uy

†2

2T D
3E dc expS 2

c2

T DS~c,ux
† ,uy

†!G .

~55!

In the above expression, the upper and lower limits of in
gration for the variableuy

† have been identified so that th
position y†>0 (uy

†2<uy
2), and the condition that the tim

taken for a particle with initial velocityuy
† to attain a final

velocity uy under the influence of gravity is positiv
semidefinite (uy

†>uy). Note that the integral in Eq.~55! is
nonzero only foruy,0, because binary collisions only cau
an accumulation of downward traveling particles at the
brating surface.

There is also a depletion of particles in the different
volume (dux

†duy
†) about (ux

† ,uy
†) in velocity space due to

binary collisions. The rate of binary collisions in the interv
dy† about y† which lead to a depletion of particles in th
differential volume (dux

†duy
†) about (ux

† ,uy
†) is calculated

using an approximate expression of the form:

R/l 52rn2E dkE duy8 f ~0,ux
† ,uy

†!
1

A2pT

g

T

3expS 2uy8
2

2T DexpS 2
2gy†

T Dwykydux
†duy

†dy†,

~56!

wherek is the unit vector in the direction of the line joinin
the centers of the two particles at the point of collision,wy

5uy
†2uy8 is the relative velocity, and the integral is carrie

out for wyky.0. In deriving the above equation, two a
sumptions have been made.

~i! The distribution functionf (y†,ux8 ,uy8) for the particle
with velocity (ux8 ,uy8) involved in the collision has been ap
proximated by the single particle velocity distributio
(2pT)21/2exp(2uy8

2/2T)d(ux8)exp(2gy†/T). This approxima-
tion is valid when the distribution function of this particle
close to that derived in the absence of binary collisions~14!.
It is shown a little later, after deriving the distribution fun
tion, that the number of particles with horizontal velociti
O(AT) different fromux50 is O(d I) smaller than the num
ber of particles with velocitiesO(d IAT) different from ux
50. Consequently, the error incurred in the estimation of
rate of collisions due to this approximation isO(d I) smaller
than the rate of collisions.

~ii ! The relative velocity@(ux
†2ux8)

21(uy
†2uy8)

2#1/2 has
been approximated byu(uy

†2uy)u. The error made due to thi
approximation isd I for particles with horizontal velocities
-

-

l

l

e

O(d IAT) different from ux50. However, if a particle has
horizontal velocityO(AT) different from ux

†50, the error
made in the rate of binary collisions is of the same mag
tude as the rate of binary collisions. However, for such p
ticles, it turns out~as discussed a little later! that the rate of
transport of particles in velocity space due to binary co
sions isO(d I) smaller than the rate of transport due to co
lisions with the vibrating surface. Consequently, the abo
approximation has a maximum error ofO(d I) in the estima-
tion of the total rate of transport of particles in veloci
space.

The above discussion indicates that the above approxi
tion for the rate of binary collisions provides a uniform a
proximation which results in a maximum error ofO(d I) in
the estimation of the total rate of transport of particles
velocity space.

The collisions between particles with velocities (ux
† ,uy

†)
and (ux8 ,uy8) at a heighty† result in a depletion of particles
with velocity (ux ,uy) at the vibrating surface, wher
(ux

† ,uy
†) are related to (ux ,uy) by Eq.~53!. The contribution

of the collisional depletion of particles to the distributio
function can be obtained in a manner similar to Eq.~55! for
the collisional accumulation:

Nout
~b!~0,ux ,uy!5

4rn2

T
f ~0,ux ,uy!uuyuexpS 2uy

2

2T D
3E

uy

~uy
2
!1/2

duy
† expS uy

†2

2T D Fuy
† erfS uy

†

A2T
D

1A2T

p
expS 2uy

†2

2T D G
58rn2f ~0,ux ,uy!uuyuerfS uuyu

A2T
D . ~57!

In deriving the above relation, the approximatio
f (y†,ux

† ,uy
†)5 f (0,ux ,uy)exp(2gy†/T) has been used; th

justification for this approximation is identical to the seco
justification provided after Eq.~56!.

The flux in velocity space due to particle collisions wi
the vibrating surface is calculated next using a proced
similar to that for the conservation equation for the distrib
tion function ~14!. If the coefficient of restitution ise in the
normal direction andet in the tangential direction, the fluxe
of particles incident on and reflected from the vibrating s
face, analogous to Eqs.~4! and ~6!, are

Nin
~v !~0,ux ,uy!duxduy5n~U1uy8! f ~0,ux8 ,uy8!dux8duy8 ,

~58!

Nout
~v !~0,ux ,uy!duxduy5~uy1U ! f ~0,ux ,uy!duxduy .

~59!

Using the relation~1! betweenuy and uy8 , and the relation
ux5etux8 , the change in the distribution function due to
particle collision with the vibrating surface is derived in
manner similar to Eq.~14! for the single particle distribution
function. The velocities (ux8 ,uy8) are expressed in terms o
(ux ,uy) using the laws for an inelastic collision at the vibra
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ing surface, and a relation between the distribution functi
f (0,ux8 ,uy8) and f (0,ux ,uy) is obtained in the limit (uy8
2uy)!uy ,

n@~uy81U8! f ~0,ux8 ,uy8!2~uy1U ! f ~0,ux ,uy!#

5ne I@T~uy]uy

2 1]uy
!1uy

2]uy
1~21at!uy

1atuyux]ux
# f ~0,ux ,uy!, ~60!

whereat5(12et)/(12e),

Nin
~v !~0,ux ,uy!2Nout

~v !~0,uy ,uy!

5ne I@T~uy]uy

2 1]uy
!uy

2]uy
1~21at!uy

1atuxuy]ux
# f * ~0,ux ,uy!. ~61!

The equation for the distribution function at steady state
obtained using the condition that the net flux

Nin
~v !1Nin

~b!82Nout
~v !2Nout

~b!850. ~62!

The flux balance equation for the scaled distribution fu
tion, f * (0,ux* ,uy* )5(T2/g) f (0,ux ,uy), in terms of the
scaled velocitiesux* 5(ux /AT) anduy* 5(uy /AT),

@uy* ]u
y*

2
1~uy*

211!]u
y*
1~21at!uy* 1atuy* ux* ]u

x*

2d Ig1~uy* !# f * ~0,ux* ,uy* !52d Ig2~ux* ,uy* !,

~63!

where the parameterd I5(2rn/e I), and the functionsg1(uy* )
andg2(ux* ,uy* ) are

g1~uy* !54uy* erfS uy*

A2
D , ~64!

g2~ux* ,uy* !5
1

A2p
Fexp„2~ux*

21uy*
2!…uy*

3E
2uy*

uy* dv expS v2

2 D E
2`

`

dc*

3expS 2
c* 2

T DS~c* ,ux* ,v !G , ~65!

wherec* 5(c/AT). Note that the equations for the distribu
tion function~63! @and the equations for the one-dimension
distribution function ~9!# are derived foruy* >0. Conse-
quently, the functionsg1(uy* ) and g2(uy* ) refer to the do-
main uy* >0.

Equation ~63! for the distribution function has to b
solved numerically, but it is necessary to obtain an analyt
solution in the limitux→0 using an asymptotic expansion
the small parameterd I . Since the distribution function is
close to the distribution function in the absence of collisio
derived previously, it is expected that the variation of t
distribution function along theux axis nearux50 is large
compared to that along theuy axis. In a naive asymptotic
s

s

-

l

al

s

expansion, the terms proportional tod I are neglected in the
conservation equation, and the following leading order so
tion is obtained forf * :

f * ~0,ux* ,uy* !5
1

N
expS 2

uy*
2

2 D uux* u211O~d I !. ~66!

This solution is not satisfactory, however, because the in
gral of the distribution function with respect toux* diverges
in the limit ux*→0, and the distribution function cannot b
normalized. The difficulty is resolved by realizing that th
O(d I) correction to the conservation equation~63! could
cause a variation ofO(d I) in the exponent ofuux* u in Eq.
~66!, and this could render the integral convergent. To inc
porate this possibility, the distribution function is written a
f * (ux* ,uy* )5uux* ucd I21( f 0* 1d I f 1* ). The constantc is deter-
mined from the solvability condition for the homogeneo
part of the conservation equation~63! @without the inhomo-
geneous term2d Ig2(ux* ,uy* )]. The inhomogeneous part o
Eq. ~63! causes a correction ofO(d I) to the leading order
equation, and the particular solution can be determined
numerically integrating Eq.~63!. This is carried out a little
later.

When the assumed formf * (0,ux* ,uy* )5uux* ucd I21( f 0*
1d I f 1* ) is inserted into the homogeneous part of Eq.~63!,
the leading order terms in the equation sum to zero forf 0*
}exp(2uy*

2/2), while theO(d I) contribution to the equation
is

uux* ucd I21@uy* du
y*

2
1~uy*

211!du
y*
12uy* # f 1* ~uy* !

5uux* ucd I21@g1~uy* !2atcuy* # f 0* ~uy* !. ~67!

The constantc can be determined from the solvability con
dition for the above equation as follows. The opera
L@Y(uy* )# is defined as

L@ f * ~uy* !#[@uy* ]u
y*

2
1~uy*

211!]u
y*
12uy* # f * ~uy* !,

~68!

the inner product̂Y,Y8& is defined as

^Y,Y8&5E
0

`

duy* Y~uy* !Y8~uy* !, ~69!

and the boundary conditionY(0)50 is imposed without loss
of generality. The solvability condition for Eq.~67! then re-
duces to

^Y* ,$@d Ig1~uy* !2d Iatcuy* # f 0* ~uy* !%&50, ~70!

whereY* (uy* ) is the solution of the equationL* @Y* (uy* )#
50, whereL* is the adjoint of the operatorL. It can be
easily verified that

L* @Y* ~uy* !#5@uy* du
y*

2
1~22uy*

2!du
y*
#Y* ~uy* ! ~71!

and the boundary conditions atuy* 5` require that the func-
tion Y* diverges slower than exp(uy*

2/2) in this limit. The
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only solution of Eq. ~71! that satisfies this condition i
Y* (uy* )5const, and the solvability condition reduces to

E
0

`

duy* $@g2~uy* !2atcuy* # f 0* ~uy* !%50. ~72!

The solution of the above equation provides the constanc,

c5
2

atAp
, ~73!

and the form of the distribution function that is correct up
leading order in the small parameterd I is

f * ~0,ux* ,uy* !5
1

2A2p
expS 2

uy*
2

2 D ~cd I !uux* u~cd I21!

3exp~2ux*
2!. ~74!

The distribution function at any heighty* can be derived in
a manner similar to Eq.~14!,

f * ~y* ,ux* ,uy* !5
1

2A2p
expS 2

uy*
2

2
2y* D

3~cd I !uux* u~cd I21! exp~2ux*
2!. ~75!

Note that the above distribution satisfies the normalizat
condition in the leading order approximation. The fac
exp(2ux*

2) has been included in the definition of the dist
bution function due to the presence of the same factor on
right side of the conservation equation~63!, and it is ex-
pected that the distribution function would decay
exp(2ux*

2) in the limit ux* @1. The presence of this facto
renders the integral of the distribution function convergen
the limit ux* @1, while leading to an error ofO(d I

2) in the
limit ux* ;d I . The above result indicates that the distributi
function diverges atux* 50, and the rate of divergence in
creases in the limitd I→0. It should also be noted that th
distribution function isO(1) for ux* 5O(d IAT), and de-
creases toO(d I) for ux* 5O(AT). The fraction of particles
with velocitiesux* 5O(1) is O(d I), and most of the particles
have horizontal velocitiesux* 5O(d IAT). However, the par-
ticles with velocitiesux* 5O(1) make a significant contribu
tion to the mean square of the velocity moments in the h
zontal direction, and so it is necessary to determine
distribution function forux* 5O(AT) to determine these mo
ments. This is done using expansions in orthogonal poly
mials.

The distribution function that includes the first effect
collisions is determined using an expansion of the form
n
r

e

n

i-
e

o-

f * ~0,ux* ,uy* !

5
1

2A2p
expS 2

uy*
2

2 Dexp~2ux*
2!

3F cd I uux* u~cd I21!1d I(
i 50

i f

(
j 50

j f

hi j Hi~ux* !Gj S uy*

A2
D G ,

~76!

where hi j are O(1) coefficients andHi(ux* ) are Hermite
polynomials.Gj (uy* ) are orthogonal polynomials of orderj
~obtained by Gramm-Schmidt orthogonalization! which are
defined in the domain 0<uy* ,`, with the weighting func-
tion exp(2uy*

2/2), all set equal to 1 atuy* 50. It can easily be
verified that the above distribution function converges to E
~74! in the limit ux*→0, because the first term proportional
uux* u(cd I21) diverges in this limit, while all other terms in th
expansion areO(d I) or smaller.

The distribution function~76! is inserted into the conser
vation equation~63!, and the resulting equation only contain
terms that are convergent in the limitux*→0. There is one
further approximation made in order to obtain coefficien
hi j that are independent of the parameterd I . The distribution
function ~76! is separated into two components,

f a* ~0,ux* ,uy* !5
1

2A2p
expS 2

uy*
2

2 D
3exp~2ux*

2!cd I uux* u~cd I21!,
~77!

f b* ~0,ux* ,uy* !5
1

2A2p
d I expS 2

uy*
2

2 D
3exp~2ux*

2!(
i 50

i f

(
j 50

j f

hi j Hi~ux* !Gj~uy* !.

When f a* (0,ux* ,uy* ) is inserted into the left side of the con
servation equation~63!, the resulting expression is

1

2A2p
Fatuy* ~cd I !@cd I uux* u~cd I21!22uux* u~cd I11!#

3exp~2ux*
2!expS 2uy*

2

2 D 2d Ig1~uy* ! f a* ~0,ux* ,uy* !G .
~78!

In addition to the terms ofO(d I), the term proportional to
d I

2uux* u(cd I21) has also been retained in the above express
because it becomesO(d I) for ux* ;d I . To determine the
coefficientshi j , the right and left sides of the conservatio
equation ~63! are multiplied byHp(ux* )Gq(uy* ) and inte-
grated over2`,ux* ,` and 0,uy* ,` to obtain equations
for hi j , and these are solved simultaneously to obtain
coefficientshi j . The equation forp50 andq50 reduces to
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1

2A2p
F E

2`

`

dux* exp~2ux*
2!E

0

`

duy* expS 2uy*
2

2 Datuy* ~cd I !

3@cd I uux* u~cd I21!22uux* u~cd I11!#

2d Ig1~uy* !~cd I !uux* u~cd I21!G
52d IE

2`

`

dux* E
0

`

duy* g2~ux* ,uy* !. ~79!

The above expression does not contain any of the co
cientshi j , and is equivalent to a solvability condition for th
differential equation~63!. It can easily be verified that th
above equation is identically satisfied, correct toO(d I), for
g1(uy* ) andg2(ux* ,uy* ) given by Eqs.~64! and ~65!.

At this point, it is useful to reexamine the assumptio
that were made@after Eq.~56!# in deriving the distribution
function. Equation~76! for the distribution function confirms
that the first assumption is valid. The change in the distri
tion function due to binary collisions for a particle with hor
zontal velocity AT different from ux* 50 is
O„nr f (0,ux* ,uy* )…, while the change in the distribution func
tion due to collisions with the vibrating surface
O„e I f (0,ux* ,uy* )… from Eq. ~61!. Consequently, the chang
in the distribution function due to binary collisions isO(d I)
smaller than that due to collisions with the vibrating surfa
for particles with horizontal velocitiesAT different from
ux* 50; this confirms the second assumption.

The coefficient ofh00 in Eq. ~79! is zero, and so this
coefficient cannot be determined from the conservation eq
tion ~63!. This coefficient is determined from the normaliz
tion condition for the distribution function as follows. Th
distribution function at any heighty in the vibrated materia
can be obtained from the distribution function aty50 using
the condition~13!,

f * ~y* ,ux* ,uy* !5 f * ~0,ux* ,h* !, ~80!

where theh* 5(uy*
212y* )1/2 and the dimensionless dis

tancey* 5gy/T. It should be noted that in deriving Eq.~80!,
only the correction due to particles reflected off the vibrat
surface has been included, and the correction due to part
at heighty* which have not yet collided with the vibratin
surface after a binary collision has been neglected; it
easily be verified that the error to the distribution functi
due to this approximation isO(e I). The normalization con-
dition is expressed in terms of the parameterh* ,

15E
0

`

dy* E
2`

`

duy* E
2`

`

dux* f * ~y* ,ux* ,uy* !

52E
0

`

dh* E
2`

`

dux* f * ~0,ux* ,h* !h* 2

5Fcd I

2
GS cd I

2 D1d I (
j 50

j f

l jh0 j G
5F12

cd Ig

2
1d I (

j 50

j f

l jh0 j G , ~81!
fi-

s

-

e

a-

les

n

whereG( ) is the gamma function,g is the Euler constant
and the coefficientsl j are

l j5A2

pE0

`

dh* h* 2 expS 2
h* 2

2 DGj~h* !. ~82!

The normalization condition~81! gives the expression for th
coefficienth00. With this, the calculation of the distribution
function that incorporates the first effect of binary collisio
is complete.

The moments of the velocity distribution can now be d
termined using the distribution function~76!,

^c~y* ,ux* ,uy* !&

5E
2`

`

dux* E
2`

`

duy* c~ux* ,uy* ! f * ~y* ,ux* ,uy* !. ~83!

The results of the numerical calculations depend oni f and
j f , the number of orthogonal polynomials included in t
expansions in Eq.~76!. However, it can be seen from Fig.
that there is very little change in the results for the veloc
moments when the number of functions is changed from 4
5, and we have assumed thati f55 and j f55. The calcula-
tions show that the first correction to the second momen
the vertical direction at the vibrating surface is zero beca
of the normalization condition~81!. The first correction to
the fourth moment of the velocity distribution in the vertic
direction is

^uy*
4&5~123.9975d I !. ~84!

The moments of the horizontal velocity at the vibrating s
face are functions ofat , which is the ratio of the coefficients

FIG. 5. The O(d I) contribution to the mean square veloci
^ux*

2& ~a! and theO(d I) contribution to the fourth moment of the
velocity in the horizontal direction̂ux*

4& ~b! as a function ofat

5(12et)/(12e) for a system where the dissipation is due to i
elastic collisions.s, i f5 j f53; n, i f5 j f54; h, i f5 j f55.
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of restitution in the horizontal and vertical directions. T
moments of the horizontal velocitŷux*

2& and ^ux*
4& are

shown as a function ofat in Fig. 5. It is seen that the velocit
moments diverge proportional toat

21 in the limit at→0, be-
cause the coefficient of restitution in the horizontal direct
tends to 1 in this limit and there is no dampening of t
horizontal velocity fluctuations. In the limitat@1, where the
coefficient of restitution in the horizontal direction becom
small, the moments of the horizontal velocity distributio
decrease to zero.

The O(d I) contributions to the nontrivial third moment
of the velocity distribution,̂ uy*

3& and ^uy* ux*
2&, are identi-

cally zero because theO(d I) contribution to the distribution
function evaluated above is symmetric aboutuy* 50. How-
ever, there is anO(nr) correction to the third moments du
to particles that have not yet collided with the vibrating s
face after a binary collision. The contribution to the thi
moment due to these particles can be evaluated by ta
moments of the Boltzmann equation for the velocity dis
bution. The equations for the third moments, suitably non
mensionalized, are@12#

]yn^uy
3&5

]cn^uy
2&

]t
, ~85!

]yn^uyux
2&5

]cn^ux
2&

]t
, ~86!

where (]cc/]t) is the nondimensionalized rate of change
the momentc due to binary collisions between particles. T
leading order collision integral can be calculated by cons
ering the collisions between particles traveling in the verti
direction; the error made due to this approximation isO(d I)
because the fraction of particles with velocitiesO(1) differ-
ent from the terminal velocities isO(d I). With this approxi-
mation, the collision integral is

]cc

]t
52rn2E dkE

2`

`

duy* E
2`

`

du1y* f 0~y,uy! f 0~y,u1y!

3@c†~uy!2c~uy!#w•k, ~87!

wherec† is the value of the moment after the binary col
sion,c is the value before the collision, andw is the differ-
ence in the vertical velocities of the two particles. The vec
k is the unit vector directed along the line joining the cent
of the two particles directed from the particle with veloci
uy to the particle with velocityu1y , and the integral is car
ried out for particles withw•k>0 which are traveling to-
wards each other. The third moments of the velocity dis
bution can easily be evaluated by integrating Eq.~87!,

^nuy
3&5 Èy

dy
]cnuy

2

]t
, ~88!

^nuyux
2&5 Èy

dy
]cnux

2

]t
. ~89!

These can be carried out analytically, and the final exp
sions for the third moments of the velocity distribution ar
-

ng
-
i-

f

-
l

r
s

i-

s-

^uy
3&52

32nrT3/2

15Ap
exp~22gy/T!, ~90!

^uyux
2&5

32nrT3/2

15Ap
exp~22gy/T!. ~91!

The above calculation shows that the magnitudes of the t
moments are (nr)T3/2, which isO(d Ie IT

3/2). The reason for
the signs of the above moments can be explained as follo
The third moment̂uy

3& at a heighty* is only due to particles
that have encountered a binary collision above a heighty* ,
since particles which have collided below the heighty* have
velocities symmetric aboutuy* 50 on their upward and
downward paths. For particles that have undergone a c
sion above the heighty* , the magnitude of the velocity in
the y direction on the downward trajectory is, on averag
lower than its value in the absence of a collision, since
binary collision transfers energy, on average, from the ve
cal to the horizontal direction. Consequently, the third m
ment ^uy

3& is negative. Energy conservation during a bina
collision requires that the moment^uyux

2& is equal in magni-
tude and opposite in direction tôuy

3&.

IV. CONCLUSIONS

The velocity distribution function for a single particle co
liding with a vibrating surface was calculated in Sec. II in t
limit where the mean square velocity of the particle is lar
compared to the amplitude of the velocity of the vibrati
surface, and the period of oscillation of the vibrating surfa
is small compared to the time between successive collis
so that there is no correlation in the velocity of the vibrati
surface during successive collisions. In this limit, the chan
in energy of the particle during a collision is small compar
to the energy of the particle, and an ordinary different
equation was derived for the distribution function. Two d
sipation mechanisms—inelastic collisions and fluid drag
and two type of amplitude functions for the vibratin
surface—symmetric and asymmetric—were considered.
important results are as follows.

~i! For a system where the dissipation is due to inela
collisions and the amplitude function is symmetric, the d
tribution function is a one-dimensional Maxwell-Boltzman
distribution and the mean square velocity scales
@2^U2&S /(12e)#. This is in agreement with the prese
simulation results, as well as those of Warret al. @14#.

~ii ! When the dissipation is due to inelastic collisions a
the amplitude function is asymmetric, the distribution fun
tion is bimodal with sharp peaks at@62^U&S /(12e)# at the
vibrating surface, and the width of each of these peaks
O@^U&S /(12e)1/2#.

~iii ! When the dissipation of energy is due to a drag fo
that is a linear function of the particle velocity and the a
plitude function is symmetric, the distribution functio
is very different from a Gaussian distribution. It has
maximum at the origin, and decays proportional
*uy

` duy exp(2uy
3/9) in the limit uy→`. The mean square ve

locity scales as (̂U2&Sg/m)2/3 in this case.
~iv! When the dissipation is due to a drag force that is
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4202 PRE 59V. KUMARAN
linear function of the particle velocity, and the amplitud
function is asymmetric, the distribution function at the v
brating surface is sharply peaked about6(3^U&Sg/m)1/2.
The width of the peaks scales as^U&S .

~v! When the dissipation is due to a drag law of the fo
(duy /dt)52mmuyuuyum21 and the amplitude function is
symmetric, the mean square velocity scales
(^U2&Sg/mm)2/(m12) and the distribution function is very dif
ferent from a Gaussian distribution.

~vi! When the dissipation is due to a drag law of the fo
(duy /dt)52mmuyuuyum21 and the amplitude function is
asymmetric, the distribution function is sharply peaked ab
6@(n12)^U&Sg/mm#1/(m11) and the width of the peak
scales aŝU&S .

In their experiments, Warret al. @7# reported that the
mean square velocity scaled as^U2&0.52, and speculated tha
the discrepancy between their experiments and theory c
be due to fluid drag or due to the small sample size. T
present analysis indicates that fluid drag reduces the sca
exponent for the mean square velocity by2

3 if the drag law is
linear, and1

2 if the drag law is quadratic for turbulent flow
Though this is close to the exponent observed by Warret al.,
the semiquantitative analysis carried out by the authors i
cates that turbulent drag is not the mechanism causing
change in exponent.

The velocity distribution that includes the first effect
binary collisions for a system where the dissipation is due
inelastic collisions was determined in Sec. III. An asympto
expansion was used in the small parameterd I52nr/(1
2e), wheren is the number of particles per unit width of th
bed andr is the particle radius. Certain assumptions we
made regarding the rate of accumulation and depletion
particles in velocity space in order to simplify the calcu
tions, and it was shown that the error made due to th
J.
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assumptions isO(d I) smaller than the leading order fluxe
With these assumptions, an analytical form of the distrib
tion function was derived in the regionux!AT. In this re-
gion, it was found that the distribution function has a pow
law divergence proportional touuxu(cd I21), where the
constantc5(A2/p). Therefore, the distribution function i
integrable in the limitux→0, and this distribution function
converges to the single particle distribution function in t
limit d I→0. The distribution function in the regionux;AT
was determined using an expansion in appropriate ortho
nal polynomials in theux anduy coordinates. The nontrivia
second and third moments of the velocity distribution we
evaluated by averaging the Boltzmann equation, and it w
found that the mean square of the horizontal velocity
O(d IT), and the third moments scale asO(d Ie IT

3/2), where
T is the mean square velocity in the vertical direction.

Though the present analysis is restricted to the limit
small perturbations, it provides a first step towards und
standing the effect of the amplitude function and dissipat
mechanism on the velocity distribution function. There ha
been earlier studies@15,16# which have reported the effect o
scaling on the amplitude function, but the present analy
indicates that the form of the velocity distribution function
also dependent on the form of the amplitude function of
vibrating surface. In addition, the form of the distributio
function and the scaling of the temperature are sensitive
the type of energy dissipation as well. The analysis also p
vides useful information for more approximate theori
which could be used over a range of densities, such as
requirement that the anisotropy in the velocity distributi
function should beO(d I) as the single particle limit is ap
proached, and the third moment of the vertical veloc
should beO(d Ie IT

3/2) in this limit.
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