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Velocity distribution for a dilute vibrated granular material
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The velocity distribution for a vibrated granular material is determined in the dilute limit where the fre-
guency of particle collisions with the vibrating surface is large compared to the frequency of binary collisions.
The particle motion is driven by the source of energy due to particle collisions with the vibrating surface, and
two dissipation mechanisms—inelastic collisions and air drag—are considered. In the latter case, a general form
for the drag force is assumed. First, the distribution function for the vertical velocity for a single particle
colliding with a vibrating surface is determined in the limit where the dissipation during a collision due to
inelasticity or between successive collisions due to drag is small compared to the energy of a particle. In
addition, two types of amplitude functions for the velocity of the surface, symmetric and asymmetric about
zero velocity, are considered. In all cases, differential equations for the distribution of velocities at the vibrating
surface are obtained using a flux balance condition in velocity space, and these are solved to determine the
distribution function. It is found that the distribution function is a Gaussian distribution when the dissipation is
due to inelastic collisions and the amplitude function is symmetric, and the mean square velocity scales as
[(U%)s/(1—e?)], where(U?)q is the mean square velocity of the vibrating surface aiglthe coefficient of
restitution. The distribution function is very different from a Gaussian when the dissipation is due to air drag
and the amplitude function is symmetric, and the mean square velocity scal@$?aso{ um) Um+2) \when the
acceleration due to the fluid drag is,umuy|uy|m‘1, where g is the acceleration due to gravity. For an
asymmetric amplitude function, the distribution function at the vibrating surface is found to be sharply
peaked around +2(U)s/(1—e)] when the dissipation is due to inelastic collisions, and arodridm
+2){(U) g/ ] MM D when the dissipation is due to fluid drag, wheig)s is the mean velocity of the
surface. The distribution functions are compared with numerical simulations of a particle colliding with a
vibrating surface, and excellent agreement is found with no adjustable parameters. The distribution function for
a two-dimensional vibrated granular material that includes the first effect of binary collisions is determined for
the system with dissipation due to inelastic collisions and the amplitude function for the velocity of the
vibrating surface is symmetric in the lim&=(2nr)/(1—e)<<1. Here,n is the number of particles per unit
width andr is the particle radius. In this limit, an asymptotic analysis is used about the limit where there are
no binary collisions. It is found that the distribution function has a power-law divergence proportional to
|u,|©%~1) in the limit u,—0, whereu, is the horizontal velocity. The constantand the moments of the
distribution function are evaluated from the conservation equation in velocity space. It is found that the mean
square velocity in the horizontal direction scalesd$, T), and the nontrivial third moments of the velocity
distribution scale a®( 8, ¢, T%?) wheree, =(1—e)/2. Here, T=[2(U?)s/(1—e)] is the mean square velocity
of the particles[S1063-651X99)06703-3
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[. INTRODUCTION of a vibrated material are studied in the dilute “Knudsen”
limit, where the frequency of binary collisions between par-
External vibrations have been widely used to assist théicles is small compared to the frequency of particle colli-
transport of granular materials in solids handling operationssions with the vibrating surface. The velocity distribution in
In these operations, there is a transfer of energy from théhe complementary limit, where the frequency of binary col-
vibrating surface to the particles, and this could result in thdisions is large compared to that of particle collisions with
fluidization of the particles. In a fluidized state, the weight ofthe vibrating surface, was the subject of earlier studies
the particles is balanced by the momentum transmitted due {®,10].
instantaneous binary collisions between particles, and the en- Gas fluidized beds, where the fluidization takes place due
ergy transmitted from the vibrating surface to the particles igo the drag force caused by a flowing gas, have been of
dissipated due to inelastic particle collisions or the fluid dragnterest for some time. These have been traditionally de-
exerted by the surrounding gas. Vibrated granular materialscribed using continuum approaches, where the particle and
have also been of interest because they exhibit unusual progas phase are described using macroscopic mass and mo-
erties, such as gaslike, liquidlike, and solidlike states, and thenentum equations. Constitutive relations, similar to those for
propagation of density waves in the medidh2]. These compressible Newtonian fluids, are written for the two
types of behavior suggest that the macroscopic properties @hases, and the coupling between the two phases is included
these systems could be derived from the microscopic lawm the form of a drag force that depends on the volume frac-
using techniques from statistical mechanics and the kinetition and relative velocities of the two phagdé&3. The stabil-
theory of gases. In the present paper, the average propertigg of the uniformly fluidized state was first analyzed by
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Jackson4] using a simple constitutive relation, and it was particles, the leading order density distribution is an expo-
found that the uniformly fluidized state is always unstable tonentially decaying Boltzmann distribution, and the leading
density fluctuations. Since then, there have been many studrder velocity distribution is a Maxwell-Boltzmann distribu-
ies that have included more complicated constitutive relation. However, the temperature of the system cannot be ob-
tions for the stress tensdE]. However, there has not yet tained from the leading approximation, but must be deter-
been a consensus on the correct form of the macroscopimined by a balance between the source of energy due to
equations. Another approach to the derivation of macroparticle collisions with the vibrating surface and the dissipa-
scopic equations is to write equations for the particle motiontion of energy due to inelastic collisions or drag. The analy-
and use statistical averaging techniques to derive the macrais indicated that the temperature scaleg ai;JS when the
scopic balance equations. This is complicated in a gas fluiddissipation is due to inelastic collisions afi¢t U3 when the
ized bed due to the complex nature of the interactions bedjssipation is due to a drag force that is linear in the particle
tween the particles and the gas, and the turbulent flow of thgelocity. A perturbation to the leading order distribution
gas. The description for a vibrofluidized bed is simpler duefunction, in the form of a finite sum of the lowest nontrivial
to the absence of the gas flow. velocity moments, was used to calculate the effect of dissi-
There has recently been a lot of interest in the velocitypation. The anisotropy and the skewness in the distribution
fluctuations of Spatially uniform vibrated granular materia'S.function due to dissipation were found to be in qua“tative
There have been experimental and computer simulation stuégreement with the experimeri. The temperature scaling
ies which have tried to determine the scaling of the veIocnyTocUéAl could be caused by the combined effect of inelastic
fluctuations in the vibrated bed as a function of the frequency,gjisions and drag. However, this analysis does not explain
and the amplitude of oscillations of the vibrating surface.ipe scaling IawTocUé"‘s observed in the simulations. More-

Luding, Herrmann, and Blumeii6] carried out "event qer the exponential decay of the velocity profile is in error
driven” simulations of a two-dimensional system of inelastic nea the hottom of the bed, where the density is sufficiently
disks in a gravitational field vibrated from below, and 0b- 506 that an ideal gas law for the relation between pressure

tained scaling laws for the density variations in the bed.;q temperature is not applicable.

Their simulations indicate that the density of the particles 1o present analysis considers the complementary limit

decreases exponentially with height at large heights abovgere the frequency of binary collisions between particles is
the vibrating surface, an?sthe height of the center of masgm | compared to the frequency of particle collisions with
was found to vary asiUp”, whereU, is the amplitude of  the vibrating surface. The system is very dilute, and is not
the velocity of the vibrating surface. Warr, Huntley, and jikely to correspond to real applications. But the motivation
Jacques[7] carried out an experimental study of a two- for this analysis is as follows. One would expect a realistic
dimensional vibrofluidized bed. The density and velocity dis-mgdel for a vibrofluidized bed to be applicable over a range
tribution functions were determined using image analysisf parameter values, ranging from dilute to dense. However,
techniques. Their experimental study also reported an expQgith the current analytical techniques available, one cannot
nential dependence of the density on the height near the togstain exact solutions to the Boltzmann equation that is ap-
of the bed, similar to the Boltzmann distribution for the den-pjicable over a wide range of parameter values, and there is
sity of a gas in a gravitational field. However, the depen-3 compromise between the exactness of the analysis and its
dence of the density deviates from the gxponential behaviq!range of applicability. One could construct a phenomeno-
near the bottom. The mean square velocity was found to varlagical model for the behavior of a vibrofluidized bed, but
asT=Ug™"in the experimental study, and the height of thefor a consistent model it should agree with some exact solu-
center of mass was found to vary Bs<Ug?. Luding [8]  tions in asymptotic limits where such solutions can be ob-
carried out simulations of rough two-dimensional disks,tained. One obvious limit is a dense system with low inelas-
where the distribution of energy between the rotational andicity where the distribution function is close to a Maxwell-
kinetic modes was examined as a function of the coefficientBoltzmann distribution. Even though this limit is not
of restitution and friction. He observed that the power lawsencountered in technological situations, it is still valuable
for the variation of the height of the center of mass with thebecause it provides a reference point for less exact solutions
number of particles and velocity of the vibrating surfacethat are valid over a larger parameter regime. In the same
from these simulations is different from that observed in thespirit, the present analysis is an attempt to obtain an exact
experiments7]. Most theoretical studies predict a scaling solution in the opposite limit, so that models can be con-
TocU(z) [7], which is at variance with the experimental results.structed that span the intermediate regime and are consistent
The author used a kinetic theory analysis to study thewith the exact limiting solutions. Similar calculations for di-
velocity fluctuations in a vibrated granular material wherelute granular materials have been carried out previously by
the dissipation of energy is due to inelastic collisions or dueKkumaran and Koclil1l] and Kumarari12].
to the fluid drag of the gag9,10]. The limit where the fre- In the leading approximation, the binary collisions are
guency of binary collisions between particles is large comneglected, and the distribution function is derived for a
pared to that of collisions with the vibrating surface wassingle particle colliding on a vibrating surface in the limit
considered. In addition, the dissipation of energy during avhere the dissipation of energy during a collision is small
collision due to inelasticity or between successive collisionccompared to the energy of the particle. A single particle col-
due to drag is small compared to the energy of a particle, stding with a vibrating surface was analyzed by Warr and
that it is possible to use a perturbation analysis in which theduntley [13] and Warret al. [14], who used both experi-
particles are considered elastic in the leading approximatiorments and computer simulations to determine the distribution
In this case, the system resembles a hard sphere gas of eladtioction. The simulations indicated that the distribution
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function is a Gaussian distribution for a system where thesquare velocity of the vibrating surface. In addition, it is
dissipation of energy is due to inelastic collisions with theassumed that the time period of oscillation of the surface is
vibrating surface, and they used a generalized Langevismall compared to the time period between successive colli-
equation for the particle velocity to calculate the distributionsions, so that there is no correlation in the velocity of the
function. surface at successive collisions. If the magnitude of the ve-
In Sec. Il, the distribution function for a single particle locity of the vibrating surface ig, the increase in the kinetic
colliding with a vibrating surface in a gravitational field is energy of the particle due to a collision with the vibrating
studied. Two dissipation mechanisms—inelastic collisionssurface isO(U?), while the dissipation of energy due to
and fluid drag—are considered. In addition, two types ofinelasticity iso((1—e2)u§), whereu, is the magnitude of
amplitude functions for the velocity of the vibrating the velocity of the particle. Equating the source and dissipa-
surface—a symmetric amplitude function with zero mean vetion of energy, it is seen that the magnitude of the particle
locity and a nonzero mean square velocity, and an asymmevelocity is uy=O(U/(1—e2)1’2)>U, and an asymptotic
ric amplitude function with nonzero mean velocity—are con-analysis in the small parameter=(1—e)*? is used to de-
sidered. A differential equation for the distribution function termine the distribution function. In addition, it is assumed
is derived in the limit where the dissipation of energy duringthat the amplitude of oscillations of the vibrating surface is
a collision due to inelasticity or between successive colli-small compared to the maximum height of the particle
sions due to drag is small compared to the energy of a pagu?/2g), and the frequency of oscillations of the surface is
tiCIe. ThIS equation iS SOIVed to Obtain the diStl’ibutiOI’l fUnC'|arge Compared to the time between successive collisions of
tion. It is found that the form of the distribution function is the partide, so that the interaction between the partide and
sensitive to the type of dissipation and the type of amplitudghe vibrating surface is modeled as a series of collisions with
function of the vibrating surface. The results of the analysighe plane located witly=0 with velocity U, and there is no
are verified using computer simulations, and excellent agree:orrelation between the velocity of the plane during succes-
ment is found with no adjustable parameters. For the case @fye collisions.
inelastic collisions, a perturbation expansion in the parameter | this section, a differential equation is derived for the
=(1-€)"?is used to determine the distribution function. gistribution function F(u,), which is defined such that
Though earlier studief7,15] have also used the parameter F(y )du, is the probability that the velocity of a particle that
(1—€?) in their expansions, the two are essentially the samgs |eaving the vibrating surface is in the intendll, about
because (% e?) =2(1-e) in the leading approximation for , The distribution functiorF (u,) is defined only foru,
(1-e)<1. >0, and the distribution function for the velocity at any
In Sec. lll, the effect of binary collisions on the distribu- height can be inferred fronfF(u,), since the particle ex-
tion function for a system with inelastic collisions and a gcytes ballistic motion between successive collisions. Con-
symmetric amplitude function is analyzed using methodssiger a collision between a particle with an initial velocity
similar to those used in Kumaran and Kddt] and Kuma- —uy, with the vibrating plate which has an instantaneous

ran [12]. An asymptotic analysis is used in the limfi elocity U”. The velocity of the particle after the collision,
=(2nr)/(1—e)<1, where the particle distribution function | s (elated to the initial velocity-u;, by

is close to the distribution function in the absence of binary ¥’
collisions. It is found that the mean square velocity in the u,—U’'=—e(—u,—U"). (1)
horizontal direction scales a®(4§,T), and the nontrivial Y

third moments of the velocity distribution scale @§4,(1

—e)T3?), whereT is the mean square velocity in the vertical Note the requiremerit) > — u)’, for a particle to collide with
direction. the surface.

Particle collisions with the vibrating surface cause a
change in the particle velocity and a flux in velocity space.
There is a collisional accumulation in the velocity interval
A. Dissipation due to inelastic collisions duy, aboutu, due to collision of the particle with velocity
—uy with the vibrating surface, wheng, andu, are related

Il. SINGLE-PARTICLE DISTRIBUTION FUNCTION

The distribution function for the velocity of a particle in a . - y . .
gravitational field driven by a vibrating s;yrface Ps derived in by Eq.(1). There is a cqll!smnal deplethn n t.he intendlly .
the present section. A two-dimensional coordinate system igboutu_y due to the CO”'S'OO of the. particle \.N'th the velocity
used for the analysis, where thexis is directed opposite to —uy with thg surface._A differential equation f(ﬁ(kjy) at
gravity, thex axis is in the horizontal plane, and the position Ste"’}ij state Is Qetermln_ed fror_n the condition that“aver-
of the vibrating surface varies symmetrically about the 29¢" accumulation rate in the interval duabout y;, due to
=0 plane. The velocity of the vibrating surface is periodic,con's'ons of.the parlt|cIeIW|th veIocﬁy in the interval giu
but no assumption is made regarding the exact form of th@Pout—uy with the vibrating surface, is equal to the “aver-
amplitude function. The collisions between the particle and®9e” depletion rate in the interval duabout u, due to col-
the vibrating surface are inelastic with a coefficient of resti-lisions of the particle with velocity in the interval gabout
tution e. The collision of the particle with the vibrating sur- —Uy With the vibrating surfaceHere, the term “average”
face results in the transfer of energy from the surface to thélenotes an average over the distribution of velocities of the
particle, while the inelastic nature of the collision results invibrating surface, and, andu, are related by Eq(1).
the dissipation of energy. It can be shown that when the The rate of collisionR of a particle with velocity in the
coefficient of elasticity is close to I(1—e)<1], the mean interval du; about—uy, with the vibrating surface moving
square velocity of the particle is large compared to the meawith velocity U’ is
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R=(U’"+uy)F(uy)duy. (2 g
The “average” flux of particles entering the intervelu, 08
aboutuy is then given by '
0.6
’ ’ ’ ’ F(u,/ T
Nin(Uy)du,=((U’ +uy)F(uy)dug)s, ) Wl
where( )s is an average over the distribution of velocities of 0.2 S
the vibrating surfaceJ’. Using Eqg. (1) to expressu)’, in 0.0 L 04 o5 1&2 I’A"tj)""‘--‘-’fz"o
terms ofuy, the flux of particles entering the interval, is ' ' (u,/T8?) ' '
Nin(uy) = (1/€){(U’+ugy)F(uy))s. 4 FIG. 1. Velocity distribution F(u,/\T) as a function of

uy/\/'l'_iS for a single patrticle colliding with a vibrating surface with

a symmetric amplitude function, where dissipation is due to inelas-
ticity. Here, T is given by Eq.(11). Solid line, analytical result
) (10; O, =0.7; A, ¢=0.3; O, =101 ¢, =102

The rate of collision of the particle with velocity in the in-
tervaldu, about—u, with the vibrating surface is

R=(uy+U)F(uy)duy,

where U is the instantaneous velocity of the surface. The 2 uf,
“average” flux of particles out of the intervalu, aboutuy F= _wTiSex 2T (10
is
_ where the mean square velociy; is
Noud(Uy)duy,=((uy+U)F(uy)duy)s. (6)
— 2
At steady state, the distribution function is determined from Tis=(2(U%s/€). 11

the equatiorN;,(u,) =Ng,(uy). This equation is difficult to
solve in general, but a solution can be obtained in the limi
€<<1. It was shown a little earlier that in this limit, the
velocity of the mean square velocity of the surfde#)s is
small compared to the mean square velocity of the particl
<u§) and the difference in velocity due to a particle collision
with the surface is small compared to the particle velocity
Consequently, it is necessary to expand the expression f
the flux (3) in a series in the parametem{;(— uy),

t'I'he above expression indicates that the mean square velocity
of the particles is proportional t9U?)s/e,, in agreement
with the assumption made above regarding the relative mag-
é}itudes of the mean square velocities of the particles and the
vibrating surface. In addition, the velocity distribution func-
tion is predicted to be a one-dimensional Maxwell-
;?roltzmann distribution at the vibrating surface.

The predicted distribution functiofl0) and (11) was
verified using computer simulation studies of the particle

b N2 2 collisions with a vibrating surface. In the simulation, the par-
dF (uy uy)® d°F

F(u))=F(uy)+(u,—uy)—+ — ticle was given an initial velocity, and the velocity of the
du, 2 duy particle was updated at each collision using the collision rule

, 3 (1). The velocityU of the vibrating surface was generated
+O(uy—uy)”. () using a random number generator at each collision. For this

urpose, a random numb&rwas generated in the interval
<x=1, and the velocity of the surface whls=(2x—1) so
that (U)s=0 for a symmetric amplitude function. In addi-
tion, care was taken to ensure that the constraint—u,
[discussed after Eql)] is satisfied. The velocity was first
updated for 18 collisions without sampling to remove de-
pendence on the initial particle velocity at the beginning of

The above expansion is inserted into the flux balance condg
tion Nj,(uy)=Ng{(uy), and the resulting equation is ex-
panded in the paramete; and the velocity of the surface
U’. The result, correct t®(e) andO((U?)g), is

, dF dF
€] ZFUy+U e _2<U>S Uy_+2F

Yduy duy the simulation, and samples were then taken for another 10
&2F  dE collisions in order to determine the distribution function. The

+2(U2)S( uy— +——|=0. (8)  velocity coordinate in the rangez\/T_issuysZ Tis was
duy duy divided into 200 bins of equal velocity intervals, and the

) ] ) distribution function at the center of the respective interval is
The solution for the conservation equatié®) depends on proportional to the number of particles in each bin. The re-
the amplitude function for the velocity of the vibrating sur- g its of the simulation fore,=10°1,10°2, and 10° are
face. For asymmetricamplitude function, the averag®))s  compared with the analytical distribution functi¢h0) and
=0, and the conservation equation reduces to (11) in Fig. 1. From this figure it is seen that there is excel-

F  dF lent agreement between the asymptotic result and the simu-
. _ 72 1 . . .

+2<U2>s( Uy— | = 9) lations fore,=10" - and 10 -. There is a deviation of about

e,(ZFuy+ uis—u': 5 =0. 0 _ Y
y duj duy 10% of the maximum value dof (uy) for €, =0.3. The de-
viation becomes about 25% of the maximum value épr
It can be easily verified that the normalized solution of the=0.7, but the qualitative form of the distribution function is
above equation for the distribution functiéhis a Gaussian correctly captured by the asymptotic analysis. In addition,

distribution there is a difference between the predicted and measured
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distribution function nearu,=0 because the asymptotic However, in the vicinity ofu,=(2(U)s/¢,), the gradient of
analysis, which assumeg>U, becomes inaccurate faf,  distribution function becomes large, and the higher order de-
~U. rivatives in the conservation equation could become signifi-
The distribution function at any heightis obtained by cant. It turns out that the width of this region is
solving the steady-state Boltzmann equation in the absend®((U)s/e’?), and the behavior in this region is determined
of binary collisions between particles: using the substitution, = ((U)s/€)(2+ %), wherev is
O(1). Theleading order conservation equation fgrwhich

represents the deviation af, from 2(U)s/€/*?, is

(U?)g d’F [ dF
where the acceleratioa,=—g, f(y,u,) is the distribution 2 (U)2 -1 d—02+e, UEJ“F
function which is defined so thd(y,uy)dy du, is the num- S

ber of particles per unit width with vertical position in the Tha solution of the above equation is, once again, a Gaussian

a(uyf) a(ayf) B

O (12

=0. (17)

intervaldy abouty and velocity in the intervadlu, aboutu,, distribution
andn is the number of particles per unit width in the bed.
The conservation equatidgf?) can easily be solved by using 2 02
the characteristic variableg and 7= (u3/2+gy); the equa- Flo)=v_+ ex;< o7 ) : (18
tion in terms of this characteristic variable becomes a a
where
af =0 (13
du, 2 [(U?s
’ a=— -1 (19
1a 2 2
e\ (U)s

Equation(13) indicates thaf is only a function ofp, and this
can be solved using the condition fbf0,u,) from Eq. (10)

at y=0, to obtain the final expression for the distribution
function:

The above distributiorf(v) is valid for u,>0, and the dis-
tribution function foru,<0 is an image of this about the
u,= 0 axis. Therefore, the distribution function at the vibrat-
5 ing surface is a bimodal distribution consisting of two Gauss-
Fy.uy) = g 1 exp( Uy g_y) (14  lan distributions centered at2(U)gle .
YT oaT 2T T It is interesting to note that the above result preditts
=0 for (U?)g=(U)3. This corresponds to the case where
Note that the present definition of the distribution function isthe amplitude of the surfac&(t) is a “sawtooth” function
slightly different from the one commonly used in kinetic A(t)=Aq[ wt—mod(wt)] where modt) is the highest in-
theory of gases. Usually, the distribution function at a heighteger less tharwt, and the velocity has a constant value
y is defined such thai(y)f(y,uy)du, is the density of par- Aqw. In this case, it can easily be verified from Ed) that
ticles with velocities in the intervadu, aboutu, at a height the velocity at steady state,,, also has a constant value
y. For a Maxwell-Boltzmann distribution, the density is de- u,=U(1+e)/(1—e€), and the exact solution for the distri-
fined asp(y)=p(0)exp(gy/T), and the distribution func- bution function is
tion is defined as‘(y,uy)=(1/\/27TT)exp(—u§/2'D. In the
present analysis, it is more convenient to use the above defi-
nition, wheref(y,u,)dy du, is the number of particles in the
interval dy abouty in real space and imlu, aboutuy in o o .
velocity space. The above analysis indicates that the distribution function at
For anasymmetricamplitude function for the vibrating the vibrating surface is bimodal, with two peaks at
surface, the mean velocitjJ)s is not zero, and the solution [+(U)s/(1—e)], and the width of each of these peaks is
for the conservation equatidB) assumes a different form. It O[(U)s/(1—€)"?]. The form of the distribution function at
can be seen from E@8) that the particle velocity, scales ~any height can easily be determined using the method of
as (U)s/e), in contrast to the scalingy~(<U2>S/e,)1’2 c_harag:tenstms us.ed garller. If the dls_tnbutlon fqnctlon at the
for a symmetric amplitude function. In this case(i#2)s  Vibrating surface is given by the leading approximati6),
~(U)2, the leading order equation for the distribution func- the distribution function at any heigltis

tion is
4(U)s\ 1 2(U
<6|9>S) o uy=* <6|>S—29y) (21

U(l+e)

1-e (20

F(uy)=5( Uy—

f(y!uy):<

€

,dF dF
ZFUy‘FUym _2<U>S Uym"‘F =0. (15
y Y for 0<y<2(U)g/€ 0.

It can easily be verified that the solution for the above equa- _The dlstrlbutlon'functllor(18) _and (19) was also verified

tion is a8 function using co_mputer. S|mulat|ons similar to those ysed for the
' symmetric amplitude function. In these simulations, the ve-

2<U>s> locity of the vibrating surfac&) was set equal to a random

(16)  humberx in the interval O<x=<1, so that{U)s#0 in this
€

case. The results are shown in Fig. 2, and it is seen that the

F(uy)=5< Uy—
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08 locity u; cannot be determined explicitly, but the velocity
S correct to second order in the drag coefficignin the small
0.6 dissipation limit is
F(v/T§?)
041 2 2,13
ey 2BUSAutuy
uy=—uy+ — T (25
0.2 39 9g
0.0° The velocity of the particle after the collision with the sur-
v / T8™) face,uy, is related tou; anduy by
FIG. 2. Velocity distributionF (v//T;,) as a function ob/\Ti5 u,—U’'=—(uy—-U’")
for a single particle colliding with an vibrating surface with an
asymmetric amplitude function, where dissipation is due to inelas- 2:“«“3,/2 4,u2u>’,3
ticity. Here, T,, is given by Eq.(19). Solid line, analytical result =Uy— —3q —+U’. (26)
180, ¢=0.7: A, €=03; 0, =101 ¢, ¢=10"2 9 99
agreement is excellent fot; =102 and 10°%, and fairly The method used to determine the distribution function in

good for ,=0.3. There is a significant quantitative differ- the present case is identical to that for a system with dissi-
ence between the asymptotic and numerical resultsefor Pation due.to |nelgst|c cplhsmns. The average flux of par-
—0.7, but the qualitative nature of the distribution function isticles entering a differential volumeu, aboutu, correct to

well captured by the asymptotic result. second order in the small parameggr analogous to Eq3),
is
B. Dissipation due to fluid drag 5 3
) . . 2uugs  Aupug
The configuration and the coordinate system used for thé;,(uy)du,={ | u;— 3 +———+U’ F(uyduy )
present case is identical to that in the preceding subsection. 9 99 S

However, the dissipation in the present case is due to the (2

drag acting on the particle between successive collisions, and

the coefficient of restitution for a particle collision with the whereu§ is related touy by Eq.(26), and the relative veloc-

vibrating surface is set equal to 1. The acceleration of thdty in Eq. (27) is different from that in Eq(3) because a

particle between successive collisions is considered to be gfarticle which leaves the surface with a velocity has a

the form velocity —uy+(2uu,?/3g) — (4nu,*9g®) before the sub-
sequent collision with the surface. The average flux of par-

(22) ticles leaving the differential volumdu, aboutu,, analo-
gous to Eq(6), is

duy
gt - 97 #uy,

2,uu§ 4,u,u§

where the drag force is considered to be linear in the velocity

and u is the ratio of the drag coefficient and the mass of a Nout(uy)duy:< ( Uy~ =5 T oz +U> F(uy)duy> ,

particle and has units of inverse time. The particle velocity is 9 99 S

large compared to the velocity of the vibrating surface in the (28

limit (wU/g)<<1 considered here, whek¢is the magnitude

of the velocity of the vibrating surface. In this limit, the where the relative velocity is once again different from that

change in the particle velocity between successive collision# Eq. (6) because a particle which leaves the surface with

due to drag is small compared to the velocity of a particle. velocity u, after a collision has a velocity—u,
The position and the velocity of a particle between suc—+(2,uu§/39)—(4ﬂu§/992) before the subsequent collision.

cessive collisions can be determined by solving the dynamiThe velocity distribution functiof (u,) is expressed using a

cal equation(22), Taylor series expansion in the parametgr-u, as before,
and the terms proportional ta, (U)g, and(U?)g are re-
: 9 i i
Uy =, expl — ut) - ;[1—exp(—,ut)], 23) tained to give
v d2F+dF) L) ( dF
u t s\ Uy Tduy | Vs Yan,
y=2[1-exp~ ut)] - -+ 5[1-exp~ ub)], duj - A Wy
1 3
(24) Yy dF o]

+ g3 duy+uyF 0. (29

whereuy is the velocity after a collision with the vibrating

surface. The velocity of the particle before the subsequertquation(29) is the conservation equation for the distribu-
collision, uy, is determined by first calculating the time re- tion function when the dissipation is due to drag.

quired from the conditiory=0, and inserting this into the For a vibrating surface with a symmetric amplitude func-
expression23) for the velocity. The expression for the ve- tion, (U)s=0, and Eq.(29) reduces to
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061 addition, there is some discrepancy between the analytical
and simulation results neary*zo for reasons discussed in
ol the preceding subsection.
’ For a distribution function with amasymmetricamplitude
F(u) function,(U)s#0, and it can be seen from E@9) thatu,
ozl ~((U)sg/ )2 1f (U%s~(U)E, then the leading order
conservation equation is
ooleai o . . . : dF o) ud dF
00 04 08 1.2 1.6 2.0 — — +F|+ &8 21Ukl =o0.
u; (U)S( uyduy F g3 duy, uyF|=0. (32

FIG. 3. Velocity distribution F(uy) as a function ofuy It can easily be verified that the solution of the above equa-
=u,/((U?)sg/r) ™ for a single particle colliding with a vibrating tjon is a & function,
surface with a symmetric amplitude function, where dissipation

is due to viscous drag. Solid line, solution of E¢31); 3(U)sg
O, (UlHsu?g?)¥B=0.7, A, (UPu?g?)¥?=0.3; 0O, F(uy)=46| u,— . (33
(UPsu?g?) =104 ((U)su?lg?)¥3=10"2 H

However, as in the preceding section, the higher gradients

, d2F dF\  ufud dF , become significant in the region neay=(3(U)sg/u)"?
(U%s Y2 tan) Tt 9\ 3 du, +uyF|=0. (300 anditis necessary to use an expansion similar to that used in
Uy y y the preceding subsection. It is useful to express the results in

terms of a dimensionless parametgy=((U)su/g)Y? The
This equation cannot be solved analytically, but a numericaéxpansion for the velocity, , in terms of this parameter, is
solution can be obtained when the equation is expressed in

- : : _ 2 13 u 12
terms of a dimensionless variallg = uy /((U%)sg/ )™, uy=<< ng) (VB+ Jegw), (34)
d’F uy®| dF wherew is O(1). The conservation equati i
" y *2e . quation, expressed in
Uy au? +(1+ ?) o +uy“F=0. 3D terms of the variabley, is
(U?s _\d’F _ [ dF
The above equation has two linearly independent solutions. V3 ?—1 d—W2+260 wawFF)=0 (3
In the limit u§,‘—>0, one of the solutions has the behavior (Us

*\_1_ %3 .
Fl(ui)_l Uy /9, and _thf second has a divergenceryg goytion of the above equation is a Gaussian distribution
Fao(uy)~In(uy). In the limit ug — o, the two solutions have

the limiting behaviorFl(u;‘)~fj* exp(—u;,‘3/9), while the c [ 2 [{—wz -
y = ex ,

second solution has the behavig~u} ~°. Since the solu- TTya 2T,a

tion F, is divergent aU§ =0, this is neglected and the solu- h

tion for the distribution function is determined by numeri- where

cally integrating Eq.(31) using the conditiorF=1 at uy 2\ _/11\2

=0. The resulting function was then normalized so that va= \/§(<U2>S <2U>S) (37)

JduyF(uy)=1. 2ep(U)s

The above results indicate that the mean square velocit¥ _ o ) )
of the particle scales af{l(J2>sg/,U«)2/31 and the distribution he velocity distribution function for thg prgsent case is
function is very different from the Gaussian distribution for Sharply peaked at-(3(U)sg/w)*? at the vibrating surface,
the case where dissipation is due to inelastic collisions. Th@nd the distribution function isO(1) for velocities
numerical solution for the conservation equatia) is com-  O(ep((U)sg/u))*? different from these peak positions.
pared with the computer simulations in Fig. 3. The procedurd he distribution function(36) is valid for u,>0, and the
used for the simulation is identical to that used for dissipa{eading order distribution fou,<0 is a mirror image of this
tion due to inelastic collisions in the preceding section, butabout theu,=0 axis. Therefore, the distribution function at
the velocity of the particles between successive collisions ighe vibrating surface is a bimodal distribution consisting of
updated using Eq€23) and (24). Figure 3 shows excellent two Gaussian functions centereda{3(U)gg/u)2
agreement between the analytical predictions and simulation The result(37) indicates thatT,,=0 as(U?)g=(U)3,
results as a function of the dimensionless parametewhich corresponds to a “sawtooth” for the amplitude func-
((U?)su?/g?) 3. It is seen that as in the case of dissipationtion as explained at the end of the preceding subsection. In
due to inelastic collisions, there is excellent agreement fothis case, the velocity of the surfatkis a constant, and the
(U su?/g?)¥3=10"2 and 10'%, and reasonable agreement velocity of the particle can be directly determined from Eq.
for (U?)su?/g?)¥3=0.3. The agreement is not very good for (26). Correct to leading order in the drag coefficignt the
(U?u?/g?)13=0.7, but the qualitative features of the dis- velocity of the particle isu,=(3(U)sg/u)"?, though there
tribution function are captured by the asymptotic analysis. Irare higher order terms which can be determined using a Tay-
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0.8 sz u* m+2
A * +| 14+ 2 +urmtlE=0. (41
g du}? (m+2)/ du W o @
0.6
F(W/TW? The above equation also has to be solved numerically, but
04 the form of the equation indicates that the velocity
~((U?)sg/ ) V"2,
For a vibrating surface with an asymmetric amplitude
02 .~ function, the equivalent of Eq32) is
dF m u? dF
008 d _ - ~me "y 7 m+1l-| _
2 2 <U>S(uyduy+F + g \m+2) duy+uy F|=0.
(w/ TE?) (42)

FIG. 4. Velocity distribution F(w/\T,,) as a function of From the above equation, it can easily be verified that the

w/ T, for a single particle colliding with an vibrating surface with |eading order distribution functiofanalogous to Eq:33)] is
an asymmetric amplitude function, where dissipation is due to vis-

cous drag. HereT,, is given by Eq.(37). Solid line, analytical (U)sg(m+2) 1/(m+1)
result (36); O, e,=0.7; A, €=0.3; O, =101 O, €p Flu)=0| —— (43
:10*2. Mm

The  distribution  function near u,=[(U)sg(m

lor series expansion of Eq&23) and (24). The distribution
function is aé function in this case as well.

The analytical predictions are compared with simulation
results in Fig. 4. The simulation procedure is identical to that
used for an inelastic particle colliding with a vibrating sur-
face with an asymmetric wave function, and the change in
velocity between successive collisions is determined usin

Eq. (22). The results indicate that the analysis correctly capy the distribution function in terms of this scaled variable is

tures the distribution function foep=10"% and 10°%, but " 5,.ssian distribution given by E36), where T, is
there is some difference between analytical and SimUIaﬁofequivalent of Eq(37))] ' va

results forep=0.3 andep=0.7.
The above analysis can easily be generalized to include
more complicated forms of the drag force. For example, con-

+2) um]¥™* 1) is determined using the scaled variakble
defined agequivalent of Eq(34)]

W= (@) 1U(m+1)

Mm

[(m+2)Y ™ Dy Jepw],  (44)

Where the parametear, = ((U)Dun/g) Y™ Y. The solution

_(m+ VMU (V)9

(49)

va

sider a drag law of the form

duy m-1
W: _g_l’vmuy|uy| (38

26p(U)s

Ill. FIRST CORRECTION DUE TO BINARY COLLISIONS

The distribution function that includes the leading order

effect of binary collisions is derived in the limit where the
and the generalized distribution functions are briefly pre-inary collisions are sufficiently infrequent compared to par-
sented here. If the velocity of a particle after a collision isticle collisions with the vibrating surface, and the distribution
uy, the velocity before the subsequent collision in the smalfunction approaches the single particle distribution function

dissipation limit is[equivalent of Eq(25)]

(39

between successive binary collisions. It is shown a little later
that this limit is observed in the parameter regimfie<1,
whered,=2nr/(1—e€), nis the number of particles per unit
width andr is the particle radius. This correction to the dis-
tribution function at the vibrating surface is derived self-
consistently at steady state by equating the collisional accu-

This can be used to determine the conservation equation fefyjation and depletion of particles in a differential volume

the distribution functiojequivalent to Eq(29)]

in velocity space. The distribution function as a function of
height is then obtained using the method of characteristics

d?F dF dF used in the preceding section. Since most of the particles
<U2>s( ST —(U)s( uym—'—F) have distribution functions that are close to the single par-
duy y Y ticle distribution function in the absence of binary collisions,
“ U™ 2 E the leading effect of binary collisions is due to collisions
omp 7y —_—t u"‘“p) =0. (40) between two particles having a velocity distribution given by
g |(m+2) du, Eq. (14). It is shown a little later, after deriving the distribu-

tion function, that the error in the collisional flux due to this

For a vibrating surface with a symmetric amplitude functionapproximation iSO(8,) smaller than the leading order colli-
(U)s=0, the distribution function can be expressed in termssional flux.

of a dimensionless variablg; = u, /((U?)sg/ ) YM*2), Before proceeding to derive the correction to the distribu-
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tion function, it is necessary to determine the change in vein the intervaldy' about the positiory’ which lead to an
locity due to a binary collision. Consider a collision betweenaccumulation of particles in the differential volurdeﬂdu
two partlcles with initial velocities (@l ) and (Ouly) inthe  about @X, y) is

interval dy' about the vertical p03|t|0|y such that one of
the particles has a final velocitwf,u), and that the line
joining the centers of the particles at the point of collision
makes an anglé with the horizontal. If the collision is elas-

RI/=8nru fdafo(y uy)fo(y wy)( csd26)?)

tic, the initial and final velocities are related by X sin( tﬁ’)du;idu;dy’r
oy :ﬁrnzgz[exp(_u_y_u_;z_zg_w)
u,=— 75|n(20), —wT3 T o7 T
wy o R t N dufdutdvt
uj=v,+ ?ycos(zg), X | dy exp( ?)S(z,/;,ux,uy) duduydy’,
(50)

where vy=(uy+uy,)/2 and wy=(uy—u; ). The above

equat|ons can be inverted to expreﬁ,sandw in terms of R 1 12
uf andu; sl u=| 55\ Iy . (5D
1+cot(26)

r—,t T
=u,+u, cot286), . . . .
vy = Uyt Uy COL26) In deriving Eg.(50), the relation between the differential

47 yolumes in velocity spacelv,dw; =2 csc(¥)duldu) has

w/=—2ulcsd26). .
y Ux CSA26) been used, and the transformation

The collision described above results |Tn ap accumulation o
of parncles in the differential volumely'du, du about _ + y
(y"ul ,uT) The rate of collisions per unit Iength in the ¢_( \/Eux cot(20)+ﬁ
honzontal direction leading to accumulation is

has been employed to convert the independent variable from
the anglef to the variablep. It can easily be verified that the
limits of integration fory are—e<y=<w. S(y,uf,ul) is

the factor sing) in Eq. (50) written in terms ofi, ul, and

(52

(R//)=n2dy‘fdv;dw;f dk fo(y'vy) fo(y"wy)
x(2rw’-k)dufdu], (48)

wherek is the unit vector in the direction of the line joining 1 he above collisions at different vertical positiops in

the centers of the two particles, and is directed from thdhe bed lead to an accumulation of particles in the differen-
center of the particle with velocity () to the center of the tial volume du,duy about {i,u y) f‘t the vibrating surface
partlcle with velocny (Quj,). The distribution functions WWhere (ix,uy) are related toif;,uy) as follows:

fo(y' Uy) andfq(y’ W) [from Eq.(14)] are 2 Ut
uf=uy, %z%JrgyT. (53

fo(y"v))= \/— T T

The total rate of accumulation of particles at the vibrating
surface due to binary collisions is given by an integral over
9 _ ___) (49) the distance from the vibrating surfagé of the collisional

T Jax flux that leads to an accumulation in the differential volume
du,du, about (y,uy),
In addition, the integral in Eq48) is carried out only for
w’-k=0, since the particles move away from each other for Ni(,?)(o,ux,u )du,duy
w’-k<0. In deriving Eq. (48), the distribution function )
f(y' uX,u) is assumed to be the distribution function \/—ngzd Td %_&)
u,duy| ex T

fo(y",uy) (uy) = (27T)  Yexp(-u2T)duy) in the ab-

sence of binary collisions. The Just|f|cat|on for this assump-
tion is as follows. It is shown a little later that the fraction of u)T,2 29y
particles with velocitiesO(T) different from ul=0 is fdy S T R
O(4)), and in the limit <1 most of the particles have )
velocities that ar®©( 5)) different fromu =0. Consequently, XJ dzpexp( —i)S(w UI,UT) _
the error made due to this assumptlon is a¥@,) smaller T
than the collisional flux of particles.

Using the relation$47) between the velocities before and It is convenient to represent the right side of Esg) using
after collision, the rate of binary collisions between particlesthe independent variables)(,u;r,) instead of (1;“, ¥y, It can

(54)
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easily be verified that the differential volumes in these twoO(§,/T) different from u,=0. However, |f a particle has
coordinates are related bnyquyT—(|uy|/g)duydu and  horizontal velocityO(\/T) different from u}=0, the error
Eq. (54) then becomes made in the rate of binary collisions is of the same magni-
tude as the rate of binary collisions. However, for such par-
\/Ernzg u>2(+ u2 ticles, it turns out(as discussed a little latethat the rate of
(b)(o Uy, U y)_ = exy{ _ y
o

T |Uy| transport of particles in velocity space due to binary colli-
sions isO(4,) smaller than the rate of transport due to col-
WYz u;;z lisions with the vibrating surface. Consequently, the above
XJ duy ex >T approximation has a maximum error ©f §,) in the estima-
Yy tion of the total rate of transport of particles in velocity

space.
The above discussion indicates that the above approxima-
tion for the rate of binary collisions provides a uniform ap-
(55) proximation which results in a maximum error Of(8,) in
the estimation of the total rate of transport of particles in
In the above expression the upper and lower limits of intevelocity space.
gration for the varlableu have been identified so that the  The collisions between particles with velocmesx(uT)
positiony'=0 (uT2<u ) and the condition that the time and (uy,uy) at a heighty" result in a depletion of partlcles
taken for a partlcle W|th initial velocnw to attain a final ~ with velocity (uy,u,) at the vibrating surface, where
velocity uy under the influence of gravny is positive (uX .uly are related toy,,uy) by Eq.(53). The contribution
semidefinite (ly>uy) Note that the integral in Eq55) is  of the collisional depletlon of particles to the distribution
nonzero only fou, <0, because binary collisions only cause function can be obtained in a manner similar to Exp) for
an accumulation of downward traveling particles at the vi-the collisional accumulation:
brating surface.
There is also a depletion of particles in the differential
volume (duidu;) about (ui,u;) in velocity space due to
binary collisions. The rate of binary collisions in the interval

wz
ddxex;{ —?)S(z,b,ul ul .

) 4rn? -uj
Nout( Oy, Uy) =——f(O.uy .uy)|uylex >

dy" abouty™ which lead to a depletion of particles in the ()12 uj? uy
; . tqt ot X dU ex UT erfl —
differential volume @u,duy) about @, ,uy) is calculated 2T/ Y 2T
using an approximate expression of the form:
: 1 g \/ ex;< )
RI/=2rn Jdkfduf(Oux,u )\/_T? .
u
—ul? 2gyt =8rr12f(0,ux,uy)|uy|en‘(—y ) (57)
><exp< 2_|_y )ex;{ - ?) wyk,dufduldy’, V2T

(56) In deriving the above relation, the approximation
fy' ux ,uy)—f(o Uy ,Uy) EXP(=gy '/T) has been used; the
wherek is the unit vector in the direction of the line joining justification for this approximation is identical to the second
the centers of the two particles at the point of collision, justification provided after E(56). _ . _
=u)—u, is the relative velocity, and the integral is carried  The flux in velocity space due to particle collisions with
out for wyk,>0. In deriving the above equation, two as- the vibrating surface is calculated next using a procedure
sumpnons have been made. similar to that for the conservation equation for the distribu-
(i) The distribution function‘(y*,u; ,u)’,) for the particle tion functllon(.14) If thg coefficient of res_tltutlpn i® in the
with velocity (uy,u;) involved in the collision has been ap- normal_ d|regt|o_n ane, in the tangential dlrect|on,. the .fluxes
proximated by the single particle velocity distribution of particles incident on and reflected from the vibrating sur-

(27T) Y2 exp(~w?/2T) S(u)exp(—gy'/T). This approxima- face, analogous to Eqed) and(®), are

tion is valid when the distribution function of this particle is (v) _ / ro g

close to that derived in the absence of binary colll?si(ms. Nin (0. Uy dusdu,=n(U +uy)f(OUy, uy)du,du, (58

It is shown a little later, after deriving the distribution func-

tion, that the number of particles with horizontal velocities (v) -

O(+/T) different fromu,=0 is O(5,) smaller than the num- Now(Oth, Uy duduy = Uy + U)T(O, )duxduy'(59)

ber of particles with velocitie®© (48, \T) different from u,

=0. Consequently, the error incurred in the estimation of theJsing the relation1) betweenu, and u;, and the relation

rate of collisions due to this approximation@ 8,) smaller  u,=eu,, the change in the distribution function due to a

than the rate of collisions. particle collision with the vibrating surface is derived in a
(i) The relative veIocity[(u ug)?+(uf—u,)?1* has  manner similar to Eq(14) for the single particle distribution

been approximated dy(u —uy)|. The error made due to this function. The velocities ; ,u ) are expressed in terms of

approximation isé, for par'ucles with horizontal velocities (uy,uy) using the laws for an melastlc collision at the vibrat-
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ing surface, and a relation between the distribution functiongxpansion, the terms proportional & are neglected in the

f(Ouy,uy) and f(Ou,,uy) is obtained in the limit ¢y
—uy)<uy,

n[(uy+U")f(Ouy,uy)—(u,+U)F(Ouy,uy)]
= ne,[T(uyaﬁy+ du,)+ u)z,&uy+ (2+ay)uy
+auyUydy 1F(0.ux,uy), (60)
wherea;=(1—e))/(1—¢),
N{©'(0,uy ,uy) — N&(Ouy ,uy)
= ne,[T(uyaﬁy+ auy)uf,auy+ (2+a)uy

+ atuxuy&ux]f* (O,uy,uy). (61)

conservation equation, and the following leading order solu-
tion is obtained forf*:

1 ux 2
f*(Ouy ,uy)= Nex;{ - %) luf| "1+ 0(8). (66)
This solution is not satisfactory, however, because the inte-
gral of the distribution function with respect tg diverges

in the limit u} —0, and the distribution function cannot be
normalized. The difficulty is resolved by realizing that the
O(4,) correction to the conservation equatié®3) could
cause a variation 0O(4)) in the exponent ofu}| in Eq.
(66), and this could render the integral convergent. To incor-
porate this possibility, the distribution function is written as
f*(uf ,uy)=|uy |~ (5 + & /f1). The constant is deter-
mined from the solvability condition for the homogeneous

The equation for the distribution function at steady state ispart of the conservation equatigd3) [without the inhomo-

obtained using the condition that the net flux

N{+ NP — NG —NEY =0. (62)

out out

geneous term- 8,g,(uy ,u;‘)]. The inhomogeneous part of
Eqg. (63) causes a correction dd(45,) to the leading order
equation, and the particular solution can be determined by

The flux balance equation for the scaled distribution func:nUmerically integrating Eq(63). This is carried out a little

tion, f*(O,u;‘,u;‘)=(T2/g)f(0,ux,uy), in terms of the

scaled velocitiesi} = (u,/\T) anduj = (u,/\T),
2
[u} au; +(uy?+ 1)dus +(2+a)uy +auy ux dy

= 8192(uy) 1T (0u ,uy) = — 81ga(uy ,uy),
(63)

where the parametefij = (2rn/¢), and the functiong, (uy)
andg,(ux ,uy) are

u*
gs(u})=4u} erf( \/_y§> , (64)

exp(— (u} >+ ul?)uj

* 2\ rw
u v

xf Y dv ex;{—)f dy*
—u} 2))

* 2
Xexp(— ¢T )S(x,b*,u§ )

1
urul)=—
gZ( X y) \/E’]T

, (69

later.

When the assumed fornf*(0uy ,uy)=|u}|°%~ (3
+6,fT) is inserted into the homogeneous part of E&p),
the leading order terms in the equation sum to zeroffor
xexp(— u;‘2/2), while theO( §;) contribution to the equation
is

— 2
|ug | 1[u§du;+(u§,‘2+1)du;+2u;]f’1‘(u§)
=[u3[* gy (uy) —acuy 15 (uy). (67)
The constant can be determined from the solvability con-
dition for the above equation as follows. The operator

L[Y(uy)] is defined as

L[f*(u;>]z[u;aj;+(u;2+ 1)ay; +2u5 16 (u5),
(68)

the inner productY,Y’) is defined as
(Y,Y’):J0 dugY(uy)Y'(uy), (69

and the boundary conditiori(0)= 0 is imposed without loss

wherey* = (4//T). Note that the equations for the distribu- of generality. The solvability condition for E¢67) then re-
tion function(63) [and the equations for the one-dimensionalduces to

distribution function (9)] are derived foru;,‘zo. Conse-
quently, the functiongy;(uy) andg,(uy) refer to the do-

main u; =0.

Equation (63) for the distribution function has to be
solved numerically, but it is necessary to obtain an analyticaé
solution in the limitu,— 0 using an asymptotic expansion in

(Y* {[8192(uy) — Sacuy 15 (uy)}) =0, (70)

where Y* (uy) is the solution of the equatiob*[Y* (uj)]

=0, whereL* is the adjoint of the operatdr. It can be
asily verified that

the small parameted,. Since the distribution function is

close to the distribution function in the absence of collisions
derived previously, it is expected that the variation of the
distribution function along thei, axis nearu,=0 is large and the boundary conditions af = require that the func-
compared to that along the, axis. In a naive asymptotic tion Y* diverges slower than exup((2/2) in this limit. The

L*[Y*(u;)]=[u;‘di;+(2—u;2)du;]Y*(u;‘) (71
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only solution of Eq.(71) that satisfies this condition is f*(0u* ,u§)
Y*(uy)=const, and the solvability condition reduces to

1 u*2
y *2
=——exg ———|exp—u
. 2\2m p( 2 ) P
| dgtteup-acy s w-o. @2 o P
X|cqluf|Cab 5> > hijHi(ux ) G; =11,
i=0j=0 2
The solution of the above equation provides the congtant (76)
5 where h;; are O(1) coefficients ancH;(uy) are Hermite

’ (73 ponn_omiaIs.Gj(u;‘) are orthogonal polyngmigls qf order
at\/; (obtained by Gramm-Schmidt orthogonalizatiomhich are
defined in the domain Qu;‘ <o, with the weighting func-
o . _ tion exp(-uj;?/2), all set equal to 1 at} =0. It can easily be
and the form of the distribution function that is correct up toyerified that the above distribution function converges to Eq.
leading order in the small parametéris (74) in the limit u} — 0, because the first term proportional to
|u¥|(c% -1 diverges in this limit, while all other terms in the
w2 expansion ar@®©(4,) or smaller.
1 eXp< _i) (c8)|uk|ca—D The distribution function(76) is inserted into the conser-
2\2x7 2 15X vation equation{63), and the resulting equation only contains
terms that are convergent in the limif —0. There is one
X exp(—ux?). (74 further approximation made in order to obtain coefficients
h;; that are independent of the parameigr The distribution

o ) ) ) ~ function (76) is separated into two components,
The distribution function at any heiglgt can be derived in

a manner similar to Eq.14),

C:

f*(ouy ,uy)=

*2
f*(ou* u*): 1 eX _UL
a2 \2n 2

1 *x 2
f*(y*,uf ul)= ex —L—y*> X exp(—uX?)cs|ur|ca-D
2\2m 2 X ’
(77
X(cé))|uF|Ca~D exp —u*?). (75 1 U*2
frou; ,ul)=——>: ex —L)
b( X y) 2\/2 | 2

Note that the above distribution satisfies the normalization
condition in the leading order approximation. The factor
exp(—ujz) has been included in the definition of the distri-
bution function due to the presence of the same factor on the
right side of the conservation equatig63), and it is ex-
pected that the distribution function would decay as
exp(—u??) in the limit u¥>1. The presence of this factor
renders the integral of the distribution function convergent in
the limit u} > 1, while leading to an error 00(5,2) in the 1
limit u} ~ &, . The above result indicates that the distributionm
function diverges at} =0, and the rate of divergence in-
creases in the limis,—0. It should also be noted that the w2 uy . ex N
distribution function isO(1) for u* =0(&,yT), and de- xexp(—uy T)exp —— |~ 89x(uy ) fz (0 ,uy) |
creases td(4)) for uij(\/f). The fraction of particles
with velocitiesu; =O(1) isO(4)), and most of the particles
have horizontal velocities} = O( 4, JT). However, the par- - _
ticles with velocitiesu* = 0(1) make a significant contribu- N addition to the terms 00(4)), the term proportional to
tion to the mean square of the velocity moments in the horidi|Ux |®” Y has also been retained in the above expression
zontal direction, and so it is necessary to determine th&ecause it become®(8)) for uy~ &, . To determine the
distribution function foru} =0O(\/T) to determine these mo- coefficientsh;;, the right and left sides of the conservation
ments. This is done using expansions in orthogonal polynoequation(63) are multiplied byH(uy)Gq(uy) and inte-
mials. grated over— o <uy < and 0<uy < to obtain equations
The distribution function that includes the first effect of for h;;, and these are solved simultaneously to obtain the
collisions is determined using an expansion of the form  coefficientsh;; . The equation fop=0 andg=0 reduces to

it It

Xexp(—u;z)z,o 2‘,0 hijHi(uf) Gj(u}).

Whenf; (0uy ,uy) is inserted into the left side of the con-
servation equatio63), the resulting expression is

a,u (cap[ca|uf|(©A Y- 2Juf| € )

*2

(78
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U*Z
f duf exp(— u*2 J' du exr{ 5 )atu (cd) ol
X[edi|ug | = 2ug] et <> 1]
_5lgl(u§)(05|)|U:|(05'_1)} 101}
0 o0 10'120.2 16.1 160 161
:—5|f duy fo duj ga(uy ,uy). (79) (@ .

The above expression does not contain any of the coeffi-
cientsh;; , and is equivalent to a solvability condition for the
differential equation(63). It can easily be verified that the
above equation is identically satisfied, correcta6s,), for <ut>
g1(uy) andgy(uy ,uy) given by Egs(64) and(65).

At this point, it is useful to reexamine the assumptions
that were mad¢after Eq.(56)] in deriving the distribution
function. Equatior(76) for the distribution function confirms ‘ ‘ ‘
that the first assumption is valid. The change in the distribu- 102 10t 100 1ot
tion function due to binary collisions for a part|cle with hori- (b) &

zontal veIOC|ty \/— different  from u =0 is FIG. 5. TheO(§,) contribution to the mean square velocity
O(nrf(0u} ,uy)), while the change in the d'St”bUt'on func- (u*2y (3 and theO(s,) contribution to the fourth moment of the
tion due to collisions with the vibrating surface is yelocity in the horizontal directiofu?*) (b) as a function ofa,
O(e f(Ouy ,uy)) from Eq. (61). Consequently, the change =(1-e)/(1—e) for a system where the dissipation is due to in-
in the d|str|but|on function due to binary collisions@ 6)) elastic collisionsO, i;=j;=3; A, i;=j;=4; O, i;=j;=5
smaller than that due to collisions with the vibrating surface

for particles with horizontal velocities/T different from  whereI'() is the gamma functiony is the Euler constant,

u¥ =0; this confirms the second assumption. and the coefficientt; are

The coefficient ofhyg in Eq. (79) is zero, and so this
coefficient cannot be determined from the conservation equa- = \/»j dy* 7* ex;{ )G (7). (82
tion (63). This coefficient is determined from the normaliza-

tion condition for the distribution function as follows. The
distribution function at any heightin the vibrated material The normalization conditiof81) gives the expression for the
can be obtained from the distribution functionyat 0 using  coefficienthyy. With this, the calculation of the distribution

the condition(13), function that incorporates the first effect of binary collisions
is complete.
f*(y*,ux ,uy)=f*(0uy ,»*), (80) The moments of the velocity distribution can now be de-

5 termined using the distribution functiqi6),
where the* =(uy?+2y*)"? and the dimensionless dis-

tancey* =gy/T. It should be noted that in deriving E®0),  (#(y*,uy ,uy))

only the correction due to particles reflected off the vibrating

surfa(_:e has be(_en included, and the _correct_ion due to pa}rticles _ fx du fm duk g(ur ,u%)F* (y*,ux ub). 83)

at heighty* which have not yet collided with the vibrating — y

surface after a binary collision has been neglected; it can

easily be verified that the error to the distribution function The results of the numerical calculations dependi oand
due to this approximation i©(e,). The normalization con- J¢, the number of orthogonal polynomials included in the

dition is expressed in terms of the parametér; expansion_s in Eq.7_6). Howeverl, it can be seen from Fig. 5
that there is very little change in the results for the velocity
. . moments when the number of functions is changed from 4 to
dy du d” f(y*,uc,uy) 5, and we have assumed that5 andj;=5. The calcula-

tions show that the first correction to the second moment in
_zf q *f du* F* (0 s %2 the vertical direction at the vibrating surface is zero because
B 7| O (O, 7")7 of the normalization conditior81). The first correction to
the fourth moment of the velocity distribution in the vertical
direction is

(uF*y=(1-3.99755). (84)

i
coy +68,> lihy (81)  The moments of the horizontal velocity at the vibrating sur-
Sl face are functions o, , which is the ratio of the coefficients
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of restitution in the horizontal and vertical directions. The 3001732

moments of the horizontal velocityu*?) and (u**) are (ui)z——exp(—Zgy/T), (90
shown as a function d; in Fig. 5. It is seen that the velocity 15\7

moments diverge proportional Eq‘l in the limit a,—0, be-
cause the coefficient of restitution in the horizontal direction 2
tends to 1 in this limit and there is no dampening of the (uyux>=ﬁexp(—29y/T).
horizontal velocity fluctuations. In the lim#;>1, where the
coefficient of restitution in the horizontal direction becomes
small, the moments of the horizontal velocity distribution
decrease to zero.

The O(§;) contributions to the nontrivial third moments
of the velocity distribution{uj®) and(u}u}?), are identi-
cally zero because th®(5,) contribution to the distribution
function evaluated above is symmetric abugtzo. How-
ever, there is a®(nr) correction to the third moments due

to particles that have not yet collided with the vibrating SU-cion above the height*, the magnitude of the velocity in

face aftte[ja btlna}[Ly CO"'S'OtF‘-I The cortltrlbuucl)n :odthbe tth'Lq the y direction on the downward trajectory is, on average,
moment due to these particles can be evaluated Dy aKing, e than jts value in the absence of a collision, since the

moments of the Boltzmann equation for the ve_IOC|ty dIStrIfbinary collision transfers energy, on average, from the verti-
b““‘”?- Th? equations for the third moments, suitably nonOII'cal to the horizontal direction. Consequently, the third mo-
mensionalized, argl2] ment(us) is negative. Energy conservation during a binary
acn<u§) collision requires that the mome(myui) is equal in magni-

312
91

The above calculation shows that the magnitudes of the third
moments arer(r) T%2, which isO(8,¢,T%?). The reason for

the signs of the above moments can be explained as follows.
The third momen(u§'> at a heighty* is only due to particles
that have encountered a binary collision above a hejght
since particles which have collided below the heighthave
velocities symmetric abouti} =0 on their upward and
downward paths. For particles that have undergone a colli-

&yn(uf;): s (850  tude and opposite in direction ((mf;).
()= Jon(u?) - IV. CONCLUSIONS
YUY a The velocity distribution function for a single particle col-

liding with a vibrating surface was calculated in Sec. Il in the
where @ ¢/ at) is the nondimensionalized rate of change of |imijt where the mean square velocity of the particle is large
the moment) due to binary collisions between particles. The compared to the amplitude of the velocity of the vibrating
leading order collision integral can be calculated by considsyrface, and the period of oscillation of the vibrating surface
ering the CO||iSi0nS betWeen pal’tides traVeling in the Verticalis small Compared to the time between successive collisions
direction; the error made due to this approximatio®{s5;)  so that there is no correlation in the velocity of the vibrating
because the fraction of particles with velocit@¢1) differ-  surface during successive collisions. In this limit, the change
ent from the terminal velocities ©(¢5;). With this approxi-  in energy of the particle during a collision is small compared

mation, the collision integral is to the energy of the particle, and an ordinary differential
b equation was derived for the distribution function. Two dis-
oV _, 2 TR R sipation mechanisms—inelastic collisions and fluid drag—
=2rn“ | dk d dus, fo(y,uy)foly, ) . . .
at f f—oo Yy f—w Uiyfoly:Uy)Toly,Uizy) and two type of amplitude functions for the vibrating

" surface—symmetric and asymmetric—were considered. The
X[ (uy) = g(uy) Jw-k, (87)  important results are as follows.
t . . (i) For a system where the dissipation is due to inelastic
wherey ' is the value of the moment after the binary colli- collisions and the amplitude function is symmetric, the dis-

sion,  is the value before the collision, amdis the differ- . ion function is a one-dimensional Maxwell-Boltzmann
ence in the vertical velocities of the two particles. The VeCtOlyistribution and the mean square velocity scales as

k is the unit vector directed along the line joining the center
of the two particles directed from the particle with velocity

Uy to the particle with velocity,y, and the integral is car- i) when the dissipation is due to inelastic collisions and

ried out for particles wittw-k=0 which are traveling t0- o ampjitude function is asymmetric, the distribution func-
wards each other. The third moments of the velocity distri+;,, is bimodal with sharp peaks bt 2(U)s/(1—e)] at the

bution can easily be evaluated by integrating EY), vibrating surface, and the width of each of these peaks is
O[(U)s/(1—e)*].

J2(U?s/(1-e)]. This is in agreement with the present
simulation results, as well as those of Watral. [14].

2
(nu§)= fydyﬁcnuy' (88) (iiil) When the dissipation of energy is due to a drag force
o ot that is a linear function of the particle velocity and the am-
plitude function is symmetric, the distribution function
) y acnu§ is very different from a Gaussian distribution. It has a
(nuyux)zLdy prant (89  maximum at the origin, and decays proportional to

fffyd Uy exp(—u§/9) in the limituy—c. The mean square ve-

These can be carried out analytically, and the final expresiocity scales as(U?)sg/u)?? in this case.
sions for the third moments of the velocity distribution are (iv) When the dissipation is due to a drag force that is a
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linear function of the particle velocity, and the amplitude assumptions i©(6,) smaller than the leading order fluxes.
funqtion is asymmetric, the distribution function at the vi- With these assumptions, an analytical form of the distribu-
brating surface is sharply peaked abatit3(U)sg/u)"  tion function was derived in the regian<T. In this re-

The width of the peaks scales €d)s. gion, it was found that the distribution function has a power-
(v) When the dissipation is due to a drag law of the formiay divergence proportional tdu,/©®~1), where the

(duy/dt)=— upu,luy/™* and the amplitude function is
symmetric, the mean square velocity scales
((U?) g/ um)?™M*2) and the distribution function is very dif-
ferent from a Gaussian distribution.

(vi) When the dissipation is due to a drag law of the form . . o :
(duy/dt)z—,umuyluy|m’l and the amplitude function is was determllned.usmg an expansion in appropriate o.rt.hogo-
asymmetric, the distribution function is sharply peaked abouf@! Polynomials in theu, anduy coordinates. The nontrivial
i[(n+2)<U>Sg/,um]1’(m+1) and the width of the peaks second and third mqments of the velocity d|s_tr|but|on were
scales agU)s. evaluated by averaging the Boltzmann equation, and it was

In their experiments, Waret al. [7] reported that the found that the mean square of the horizontal velocity is
. i 3/

mean square velocity scaled @32)°52 and speculated that ©(41T), and the third moments scale @4, e T %), where
the discrepancy between their experiments and theory coulfi is the mean square velocity in the vertical direction.
be due to fluid drag or due to the small sample size. The Though the present analysis is restricted to the limit of
present analysis indicates that fluid drag reduces the scalirginall perturbations, it provides a first step towards under-
exponent for the mean square velocity bif the drag law is ~ standing the effect of the amplitude function and dissipation
linear, and3 if the drag law is quadratic for turbulent flow. mechanism on the velocity distribution function. There have
Though this is close to the exponent observed by \Waal, been earlier studigd 5,16 which have reported the effect of
the semiquantitative analysis carried out by the authors indiscaling on the amplitude function, but the present analysis
cates that turbulent drag is not the mechanism causing thiadicates that the form of the velocity distribution function is
change in exponent. also dependent on the form of the amplitude function of the

The velocity distribution that includes the first effect of vibrating surface. In addition, the form of the distribution
binary collisions for a system where the dissipation is due tdunction and the scaling of the temperature are sensitive to
inelastic collisions was determined in Sec. Ill. An asymptoticthe type of energy dissipation as well. The analysis also pro-
expansion was used in the small paramefee=2nr/(1  vides useful information for more approximate theories
—e), wheren is the number of particles per unit width of the which could be used over a range of densities, such as the
bed andr is the particle radius. Certain assumptions wererequirement that the anisotropy in the velocity distribution
made regarding the rate of accumulation and depletion ofunction should beD(4,) as the single particle limit is ap-
particles in velocity space in order to simplify the calcula- proached, and the third moment of the vertical velocity
tions, and it was shown that the error made due to thesshould beO( 8, ¢, T%?) in this limit.

constantc= (\/2/ar). Therefore, the distribution function is
a?ntegrable in the limitu,—0, and this distribution function
converges to the single particle distribution function in the
limit 8,—0. The distribution function in the regiom ~\T
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